Journal of Jilin University(Earth Science Edition) ›› 2021, Vol. 51 ›› Issue (4): 1268-1275.doi: 10.13278/j.cnki.jjuese.20210049

Previous Articles     Next Articles

Numerical Simulation and Waveform Characteristics of Borehole Acoustic Field in Kelvin-Voigt Viscoelastic Medium Well

Yue Chongwang1, Wang Zhuwen2   

  1. 1. College of Geological Engineering & Surveying, Chang'an University, Xi'an 710054, China;
    2. College of GeoExploration Science and Technology, Jilin University, Changchun 130026, China
  • Received:2021-02-06 Online:2021-07-26 Published:2021-08-02
  • Supported by:
    Supported by the National Natural Science Foundation of China (41874135, 41504090)

Abstract: The rock medium has viscous properties, and the viscoelastic medium model is closer to the real situation of the rock medium than the elastic medium model. According to the constitutive relationship of the Kelvin-Voigt viscoelastic element model, the staggered grid finite difference equations of the viscoelastic isotropic medium in the cylindrical coordinate system are derived, and the numerical simulation of acoustic field of the wellbore in viscoelastic medium are completed. The simulation results show that the rock quality factor and the acoustic source center frequency have effects on the acoustic field inside and outside the well in the viscoelastic medium:The attenuation of the acoustic field outside and inside the well decreases with the increase of the quality factor, and the wave amplitude outside the well and the reflected wave amplitude increase accordingly; The attenuation of the acoustic field outside the well decreases with the increase of the source center frequency, and the wave amplitude outside the well increases accordingly; The attenuation of the acoustic field in the well increases with the increase of the source center frequency, and the wave amplitude in the well decreases accordingly.

Key words: Kelvin-Voigt model, viscoelastic medium, staggered grid finite difference, borehole acoustic field, waveform characteristics

CLC Number: 

  • P631.8
[1] 孙成禹.地震波理论与方法[M]. 东营:中国石油大学出版社,2007. Sun Chengyu. Theory and Methods of Seismic Waves[M]. Dongying:China University of Petroleum Publishing House, 2007.
[2] Madja G, Chin R C Y, Followill F E. A Perturbation Theory for Love Waves in Anelastic Media[J]. Geophysical Journal of the Royal Astronomical Society, 1985, 80(1):1-34.
[3] 刘瑞珣,张秉良,张臣. 描述岩石黏弹性固体性质的开尔文模型[J]. 地学前缘,2008,15(3):221-225. Liu Ruixun, Zhang Bingliang, Zhang Chen. The Kelvin Model Describing Rock Materials with Behaviour of a Viscoelastic Solid[J]. Earth Science Frontiers, 2008, 15(3):221-225.
[4] Emmerich H, Korn M. Incorporation of Attenuation into Time-Domain Computations of Seismic Wave Fields[J]. Geophysics, 1987, 52(9):1252-1264.
[5] Robertsson J O A, Blanch J O, Symes W W. Viscoelastic Finite-Difference Modeling[J]. Geophysics, 1994, 59(9):1444-1456.
[6] Robertsson J O A. A Numerical Free-Surface Condition for Elastic/Viscoelastic Finite-Difference Modeling in the Presence of Topography[J]. Geophysics, 1996, 61(6):1921-1934.
[7] Saenger E H, Bohlen T. Finite-Difference Modeling of Viscoelastic and Anisotropic Wave Propagation Using the Rotated Staggered Grid[J]. Geophysics, 2004, 69(2):583-591.
[8] Bai Tong,Tsvankin I. Time-Domain Finite-Difference Modeling for Attenuative Anisotropic Media[J]. Geophysics, 2016, 81(2):c69-c77.
[9] 杜启振,杨慧珠. 线性黏弹性各向异性介质速度频散和衰减特征研究[J]. 物理学报,2002,51(9):2101-2108. Du Qizhen, Yang Huizhu. Velocity Dispersion and Attenuation in Anisotropic Linear Viscoelastic Media[J]. Acta Physica Sinica, 2002, 51(9):2101-2108.
[10] 杜启振. 各向异性黏弹性介质伪谱法波场模拟[J]. 物理学报,2004, 53(12):4428-4434. Du Qizhen. Wavefield Forward Modeling with the Pseudo-Spectral Method in Viscoelastic and Azimuthally Anisotropic Media[J]. Acta Physica Sinica, 2004, 53(12):4428-4434.
[11] 苑春方,彭苏萍,张中杰,等. Kelvin-Voigt均匀黏弹性介质中传播的地震波[J].中国科学:D辑:地球科学, 2005, 35(10):957-962. Yuan Chunfang, Peng Suping, Zhang Zhongjie, et al. Seismic Wave of Propagation in Homogeneous Kelvin-Voigt Viscoelastic Medium[J]. Science in China:Series D:Earth Sciences, 2005, 35(10):957-962.
[12] 孙成禹,印兴耀.三参数常Q黏弹性模型构造方法研究[J]. 地震学报,2007,29(4):348-357. Sun Chengyu, Yin Xingyao. Construction of Constant-Q Viscoelastic Model with Three Parameters[J]. Acta Seismologica Sinica, 2007, 29(4):348-357.
[13] 孙成禹,肖云飞,印兴耀,等. 黏弹介质波动方程有限差分解的稳定性研究[J].地震学报,2010,32(2):147-156. Sun Chengyu, Xiao Yunfei, Yin Xingyao, et al. Study on the Stability of Finite Difference Solution of Visco-Elastic Wave Equations[J].Acta Seismologica Sinica, 2010,32(2):147-156.
[14] 郭智奇. 黏弹各向异性介质波场模拟与储层信息研究[D]. 长春:吉林大学,2008. Guo Zhiqi. Wave Field Modeling in Viscoelastic Anisotropic Media and Reservoir Information Study[D]. Changchun:Jilin University, 2008.
[15] Guo Zhiqi, Liu Xiwu, Fu Wei, et al. Modeling and Anlysis of Azimuthal AVO Responses from a Viscoelastic Anisotropic Reflector[J]. Applied Geophysics, 2015, 12(3):441-452.
[16] 刘财,胡宁,郭志奇,等. 基于分数阶时间导数常Q黏弹本构关系的含黏滞流体双相VTI介质中波场数值模拟[J].地球物理学报,2018,61(6):2446-2458. Liu Cai,Hu Ning, Guo Zhiqi, et al. Numerical Simulation of the Wavefield in a Viscous Fluid-Saturated Two-Phase VTI Medium Based on the Constant-Q Viscoelastic Constitutive Relation with a Fractional Temporal Derivative[J]. Chines Journal of Geophysics, 2018,61(6):2446-2458.
[17] 邵广周,赵凯鹏,吴华. 基于MPI的面波有限差分正演模拟[J].吉林大学学报(地球科学版),2020,50(1):294-303. Shao Guangzhou, Zhao Kaipeng, Wu Hua. Finite Difference Forward Modeling of Surface Waves Based on MPI[J]. Journal of Jilin University (Earth Science Edition), 2020, 50(1):294-303.
[18] 张壹,王赟,王祥春,等. 黏弹性介质地震波吸收衰减研究进展[J].石油物探,2021,60(2):238-250. Zhang Yi, Wang Yun, Wang Xiangchun, et al. Research Progress on the Absorption Attenuation of Seismic Waves in Viscoelastic Media[J]. Geophysical Prospecting for Petroleum, 2021, 60(2):238-250.
[19] Alford R M, Kelly K R, Boore D M. Accuracy of Finite-Difference Modeling of Acoustic Wave Equation[J]. Geophysics, 1974, 39(6):834-842.
[1] Mou Dan, Zhang Lichun, Xu Changling. Comparison of Three Classical Machine Learning Algorithms for Lithology Identification of Volcanic Rocks Using Well Logging Data [J]. Journal of Jilin University(Earth Science Edition), 2021, 51(3): 951-956.
[2] Shao Cairui, Yuan Ye, Zhang Fuming, Chen Guoxing, Cao Xianjun. A 2D Decomposition Real-Time Drawing Method for Geo-Steering of Logging While Drilling [J]. Journal of Jilin University(Earth Science Edition), 2021, 51(1): 256-265.
[3] Yu Yang, Wang Zhuwen, Ning Qinqin, Xu Fanghui. Logging Evaluation of In-Situ Leachable Sandstone Uranium Mineralization in Sifangtai Formation of Daqing Placanticline, Songliao Basin [J]. Journal of Jilin University(Earth Science Edition), 2020, 50(3): 929-940.
[4] Qin Min, Shen Huilin, Ding Lei, Liu Huan, Huang Xinxiong, Zhang Limin. Determining Mixed Liquid Resistivity of Water-Flooded Reservoir Based on Micro-Element Dynamic Material Balance Model [J]. Journal of Jilin University(Earth Science Edition), 2020, 50(3): 919-928.
[5] Jia Yinggang, Zhao Jun, Jiang Lei, Guan Liwei, Wang Xiaoxuan, He Liang. Early Paleozoic Tectonic Evolution of Northern Yili Block: Evidence from Diorite in Wenquan, Xinjiang [J]. Journal of Jilin University(Earth Science Edition), 2019, 49(4): 1015-1038.
[6] Zhou Xiang. Geochemistry and Tectonic Implication of Volcanic Rocks of Yingcheng Formation in Northern Songliao Basin [J]. Journal of Jilin University(Earth Science Edition), 2019, 49(4): 1001-1014.
[7] Ye Tao, Wei Ajuan, Huang Zhi, Zhao Zhiping, Xiao Shuguang. Quantitative Identification of Volcanic Lithology Based on Comprehensive Principal Component Analysis and Bayes Discriminant Method: A Case Study of Mesozoic in Bohai Bay [J]. Journal of Jilin University(Earth Science Edition), 2019, 49(3): 872-879.
[8] Wang Zhuwen, Xu Fanghui, Liu Jinghua, Ning Qinqin, Yu Yang. Stoneley Wave Response Characteristics of Gas-Bearing Fractural Volcanic Formation in Liaohe Eastern Depression [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(6): 1876-1888.
[9] Liao Dongliang, Zeng Yijin. Establishment of Formation Shear Fracture Model by Logging Data [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(4): 1268-1276.
[10] Zhang Bo, Cao Hongkai, Sun Jianmeng, Zhang Pengyun, Yan Weichao. Numerical Simulation of Response Characteristics of Array Induction Logging in Heavy Oil Thermal Recovery Formation [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(4): 1277-1286.
[11] Pan Baozhi, Liu Wenbin, Zhang Lihua, Guo Yuhang, Aruhan. A Method for Improving Accuracy of Reservoir Fracture Identification [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(1): 298-306.
[12] Xiao Fan, Chen Jianguo. Application of PPC Model Combined with RCGA to Identify and Extract Geochemical Anomaly [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(4): 1319-1330.
[13] Li Zhenling, Shen Jinsong, Li Xining, Wang Lei, Dan Weining, Guo Sen, Zhu Zhongmin, Yu Renjiang. Estimating Porosity Spectrum of Fracture and Karst Cave from Conductivity Image by Morphological Filtering [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(4): 1295-1307.
[14] Zhang Hengrong, He Shenglin, Wu Jinbo, Wu Yixiong, Liang Yunan. A New Method for Predicting Permeability Based on Modified Kozeny-Carmen Equation [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(3): 899-906.
[15] JiangYanjiao, Sun Jianmeng, Gao Jianshen, Shao Weizhi, Chi Xiurong, Chai Xiyuan. Numerical Simulation of Mud Invasion Around the Borehole in Low Permeability Reservoir and a Method for Array Induction Log Resistivity Correction [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(1): 265-278.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Chun-bai,ZHANG Xin-tao,LIU Li,REN Yan-guang,MENG Peng. The Thermal Fluid Activities and Their Modification on Volcaniclastic Rock in Budate Group-An Example from the Beier Sag of Hailaer Basin[J]. J4, 2006, 36(02): 221 -0226 .
[2] ZOU Xin-ning,SUN Wei,ZHANG Meng-bo,WAN Yu-jun. The Application of Seismic Attributes Analysis to Lithologic Gas Reservoir Description[J]. J4, 2006, 36(02): 289 -0294 .
[3] GUO Hong-jin, LI Yong, ZHONG Jian-hua, WANG Hai-qiao. Carbonate Reservoir Properties in Member 1 of Shahejie Formation of Paleogene in the Dongxin Oilfield, Shandong Province[J]. J4, 2006, 36(03): 351 -357 .
[4] DU Ye-bo,JI Han-cheng,ZHU Xiao-min. Research on the Diagenetic Facies of the Upper Triassic Xujiahe Formation in the Western Sichuan Foreland Basin[J]. J4, 2006, 36(03): 358 -364 .
[5] LIU Jia-jun, LI Zhi-ming,LIU Jian-ming,WANG Jian-ping,FENG Cai-xia, LU Wen-quan. Mineralogy of the Stibnite-Antimonselite Series in the Nature[J]. J4, 2005, 35(05): 545 -553 .
[6] SU Ji-jun, YIN Kun, GUO Tong-tong. Optimization of the JointThread of Diamond WireLine Coring Drill Pipe[J]. J4, 2005, 35(05): 677 -680 .
[7] TANG Jian-sheng, XIA Ri-yuan, ZOU Sheng-zhang, LIANG Bin. Characteristics of Karst Medium System and Its Hydrogeologic Effect in the South Tianshan, Xinjiang[J]. J4, 2005, 35(04): 481 -0486 .
[8] XIONG Bin. Inverse Spline Interpolation for the Calculation of All-Time Resistivity for the Large-Loop Transient Electromagnetic Method[J]. J4, 2005, 35(04): 515 -0519 .
[9] DU Chun-guo, ZOU Hua-yao, SHAO Zhen-jun,ZHANG Jun. Formation Mechanism and Mode of Sand Lens Reservoirs[J]. J4, 2006, 36(03): 370 -376 .
[10] XU Sheng-wei,WANG Ming-chang,BAI Ya-hui,ZHANG Xue-ming. A Study and Implementation of the Distributed Publication Service of Massive Imagery Data Based on J2EE[J]. J4, 2006, 36(03): 491 -496 .