J4

• 水文·工程·环境 • Previous Articles     Next Articles

Distribution of Soil Magnetic Susceptibility and Heavy Metal Elementsand Their Correlativity in Huzhou City

JIANG Yue-hua1,2,YIN Hong-fu1,WANG Run-hua2,KANG Xiao-jun2   

  1. 1. Faculty of Earth Sciences, China University of Geosciences, Wuhan 430074,China;2. Nanjing Institute of Geology and Mineral Resources, Nanjing 210016,China
  • Received:2004-11-20 Revised:1900-01-01 Online:2005-09-26 Published:2005-09-26
  • Contact: JIANG Yuehua

Abstract: Based on the test results of magnetic parameters and chemical analysis of 84 surface and 17 section soil samples, 11 rock samples, the distribution of soil magnetic susceptibility and heavy metal elements, origin and their correlativity were studied in Huzhou City where industry and agriculture are flourishing. The study revealed that: The high anomalous areas of magnetic susceptibility are consistent with those of soil heavy metal elements in the surface soils in the Huzhou City of developed industry and agriculture areas; The magnetic susceptibility and heavy metal element contents in the section soils are both decreasing from the upper to the lower; The high anomaly of the magnetic susceptibility and heavy metal element contents in the surface soils resulted from the influence of mankind economic and engineering activities in Huzhou City, such as free piling up mucipal garbage, applying garbage as fertilizer, discharge of industrial waste gas, material and water, overapplication of pesticide and chemical fertilizer in the local towns; It is obvious that the correlativity between soil magnetic susceptibility and Cd、Hg、Pb、As and Cr contents are different in the different environmental conditions. In dry land magnetic susceptibility is highly correlated with Hg and Pb and has poor correlativity with Cd、As and Cr; in paddy field magnetic susceptibility is highly correlated with Pb and As, and evidently with Cd and no correlativity with Hg and Cr.

Key words: magnetic susceptibility, heavy metal, soil, environmental magnetism, geochemistry, Huzhou City

CLC Number: 

  • X53
[1] Zhang Qiang, Ding Qingfeng, Song Kai, Cheng Long. Detrital Zircon U-Pb Geochronology and Hf Isotope of Phyllite of Langyashan Formation in Hongshuihe Iron Ore District of Eastern Kunlun and Their Geological Significance [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(4): 1085-1104.
[2] Zhao Jintong, Niu Ruiqing, Yao Qi, Wu Xueling. Landslide Susceptibility Assessment Aided by SAR Data [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(4): 1182-1191.
[3] Li Changyu, Ma Guixia, Hao Guang, Xu Liang. Effect on Temperature Field of Subgrade Cold Resistive Layer in Seasonal Frost Region [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(4): 1174-1181.
[4] Guo Chuntao, Li Ruyi, Chen Shumin. Rare Earth Element Geochemistry and Genetic Model of Dolomite of Yingshan Formation in Gucheng Area, Tarim Basin [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(4): 1121-1134.
[5] Cui Yachuan, Yu Jiejiang, Yang Wanzhi, Zhang Yuanhou, Cui Ce, Yu Jielu. Geochronology, Geochemistry and Petrogenesis of Hornblende Gabbro in Huangshan Area of Jueluotage Belt, Eastern Tianshan [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(4): 1105-1120.
[6] Zhao Xilin, Jiang Yang, Xing Guangfu, Yu Shengyao, Peng Yinbiao, Huang Wencheng, Wang Cunzhi, Jin Guodong. Chencai Early Paleozoic Subduction-Accretionary and Their Restrictions on Collage Between Cathaysia and Yangtze Block [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(4): 1135-1153.
[7] Dai Jierui, Yu Chao, Zhang Mingjie, Dong Jian, Hu Xueping. Distribution Characteristics and Sources of Heavy Metals in Urban Atmospheric Particulate Matter in Zibo City [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(4): 1201-1211.
[8] Wang Chaoyang, Meng En, Li Zhuang, Li Yanguang, Jin Mengqi. Age, Petrogenesis and Their Constraints on Regional Crustal Evolution of Late Neoarchean Gneisses in Southeast Jilin Province [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(3): 587-625.
[9] Wang Changming, Zhang Suoyu, Li Shuo. Secondary Consolidation Characteristics of Yitong Soft Soil [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(3): 799-804.
[10] Xu Jun, Hao Libo, Zhao Xinyun, Zhao Yuyan, Ma Chengyou, Wei Qiaoqiao, Wu Chao, Shi Houli. Spatial-Temporal Distribution of Heavy Metals in Surface Sediments from Upper Reaches of the Songhua River [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(3): 854-862.
[11] Wang Yan, Lu Qi, Liu Cai, She Songsheng, Liu Sixin. Using GPR Antenna-Target Polarization Instantaneous Attribute Analysis Method to Detect LNAPL Contaminated Soil [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(2): 491-500.
[12] Lu Jilong, Liu Qizhi, Wang Chunzhen, Cai Bo, Hao Libo, Yin Yechang, Zhao Yuyan. Characteristics and Potential Ecological Risk of Heavy Metals of Sediments in Erdaosonghua River [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(2): 566-573.
[13] Qi Tianjiao, Xue Chunji, Xu Bixia. Zircon U-Pb Age and Geochemical Characteristics of Granites from Buheta Cu(Au) Mineralization District in Zhaosu County, Xinjiang Province [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(1): 132-144.
[14] Sun Fanting, Liu Chen, Qiu Dianming, Lu Qian, He Yunpeng, Zhang Mingjie. Petrogenesis and Geodynamic Significance of Intermediate-Basic Intrusive Rocks in Xiaokuile River, Eastern Slope of the Great Xing'an Range: Evidences of Zircon U-Pb Geochronology, Elements and Hf Isotope Geochemistry [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(1): 145-164.
[15] Zheng Guodong, Qin Jianxun, Fu Wei, Yang Zhiqiang, Zhao Xinjin, Lu Bingke. Influencing Factors on Distribution and Accumulation of Arsenic in Topsoil in Beibu Gulf of Guangxi [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(1): 181-192.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!