J4 ›› 2010, Vol. 40 ›› Issue (2): 227-236.

    Next Articles

Porosity and Permeability of Pyroclastic Rocks of the Yingcheng Formation in Songliao Basin

HUANG Yu-long1, WANG Pu-jun1, SHAO Rui2   

  1. 1.College of Earth Sciences, Jilin University, Changchun 130061, China;2.Exploration &|Development Institute,Daqing Oilfield Company Ltd., Daqing, Heilongjiang 163712, China
  • Received:2009-10-22 Online:2010-03-26 Published:2010-03-26

Abstract:

Correlation among 35 in-basin boreholes and 2 continuous field coring sections resulted that porosity and permeability of pyroclastic rocks (mean 18.7%, 0.32×10-3μm2) are higher than that of volcanic lava rocks (mean 14.0%, 0.18×10-3μm2) in the shallow part of basin with burial depth less than 500 meters, while contrarily in the deep part of basin with burial depth more than 2 800 meters, porosity and permeability of pyroclastic rocks (mean 2.6%, 0.05×10-3μm2) are rather poor than volcanic lava rocks (mean7.3%, 0.07×10-3μm2).Generally, porosity and permeability of both two types of rocks  decrease with increasing burial depth, however, the changing rate of pyroclastic rocks is remarkably larger than that of volcanic lava rocks. Therefore, volcanic lava rocks become primary reservoir due to higher porosity and permeability than pyroclastic rocks when burial depth range is below 2 500 to 3 000 meters. This is mainly contributed by their differences in diagenesis as volcanic lavas are concreted by cooling so that their framework volume is hardly affected by compaction, while pyroclastic rocks are consolidated by compaction, similarly to sedimentary rocks. Therefore, petroleum exploration in the middle and shallow part of basin (burial depth less than 2 500 meters) could attentively aim at pyroclastic rocks.

Key words: Songliao basin, Cretaceous Yingcheng Formation, pyroclastic rocks, porosity, permeability

CLC Number: 

  • P618.13
[1] Ma Guoqing, Meng Qingfa, Huang Danian. Structure Identification by Gravity Anomaly in Songliao Basin [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(2): 507-516.
[2] Cai Laixing, Lu Shuangfang, Xiao Guolin, Wang Jiao, Wu Zhiqiang, Guo Xingwei, Hou Fanghui. Controlling Action of Space-Time Coupling Relationship Between High-Quality Source Rocks and High-Quality Reservoirs: Contrasting Accumulation Conditions of Tight Oil in the Southern Songliao Basin with Tight Gas in the Northern Songliao Basin [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(1): 15-28.
[3] Cai Laixing, Lu Shuangfang, Zhang Xunhua, Xiao Guolin, Wu Zhiqiang, Huang Wenbiao. Establishment of Evaluation Scheme of Tight Sandstone Reservoirs Based on Pore Throat:A Case Study on the 4th Member of Quantou Formation at Central Depression of Southern Songliao Basin [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(6): 1654-1667.
[4] Li Yalong, Yu Xinghe, Shan Xin, Wang Jiao, Shi Xin, Hu Peng. Evaluation on Sealing Capability of Shanxi Formation in Southeast Ordos Basin [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(4): 1070-1082.
[5] Li Zhenling, Shen Jinsong, Li Xining, Wang Lei, Dan Weining, Guo Sen, Zhu Zhongmin, Yu Renjiang. Estimating Porosity Spectrum of Fracture and Karst Cave from Conductivity Image by Morphological Filtering [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(4): 1295-1307.
[6] Zhang Hengrong, He Shenglin, Wu Jinbo, Wu Yixiong, Liang Yunan. A New Method for Predicting Permeability Based on Modified Kozeny-Carmen Equation [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(3): 899-906.
[7] Kang Xueyuan, Shi Xiaoqing, Shi Liangsheng, Wu Jichun. Inverse Multiphase Flow Simulation Using Ensemble Kalman Filter: Application to a 2D Sandbox Experiment of DNAPL Migration [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(3): 848-859.
[8] Bao Xinhua, Zhang Yu, Li Ye, Wu Yongdong, Ma Dan, Zhou Guanghui. Evaluation of Development Selection for Enhanced Geothermal System in Songliao Basin [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(2): 564-572.
[9] Gao Xiang, Liu Zhihong, Nie Zhiyang, Yao Yong, Jia Wo, Wang Chao, Song Jian. Determination of Timing and Its Geological Significance of Daqing Placanticline in Songliao Basin [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(1): 74-83.
[10] Jia Zhenzhen, Lin Chengyan, Ren Lihua, Dong Chunmei, Gong Bao. Diagenesis and Reservoir Quality Evolution of Low Permeability Tuffaceous Sandstones in Suderte Oilfield [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(6): 1624-1636.
[11] Lin Chengyan, Cao Zheng, Ren Lihua, Zhang Changsheng, Fan Ruifeng, Wang Ye, Xing Xinya, Ma Xiaolan. Oil Enrichment Regularity and Accumulation Modes of Putaohua Reservoir in Daqingzijing Syncline Area,Southern Songliao Basin [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(6): 1598-1610.
[12] Li Shiwen, Yin Changchun, Weng Aihua. Full-Time Inversion of Time-Domain AEM Data for Resistivity and Magnetic Permeability [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(6): 1830-1836.
[13] Qiu Longwei, Shi Zheng, Fu Dawei, Pan Zehao, Yang Shengchao, Qu Changsheng. Controlling Factors Analysis and Quantitative Model of Shahejie 3rd Sandstone Porosity in Linnan Sag [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(5): 1321-1331.
[14] Liu Cai, Yang Baojun, Feng Xuan, Shan Xuanlong, Tian You, Liu Yang, Lu Qi, Liu Caihua, Yang Dong, Wang Shiyu. Multivariate Exploration Technology of Hydrocarbon Resources [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(4): 1208-1220.
[15] Wen Zhiliang, Jiang Fuping, Zhong Changlin, Jiang Xuefei, Wang Guoqian, Qi Yan. Features and Origin of Super-Large Oil Shale Deposit in Southeast Uplift of the Songliao Basin [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(3): 681-691.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!