Journal of Jilin University(Earth Science Edition) ›› 2017, Vol. 47 ›› Issue (3): 848-859.doi: 10.13278/j.cnki.jjuese.201703205

Previous Articles     Next Articles

Inverse Multiphase Flow Simulation Using Ensemble Kalman Filter: Application to a 2D Sandbox Experiment of DNAPL Migration

Kang Xueyuan1,2, Shi Xiaoqing1, Shi Liangsheng2, Wu Jichun1   

  1. 1. Key Laboratory of Surficial Geochemistry, School of Earth Science and Engineering, Nanjing University,Nanjing 210023, China;
    2. State Key Laboratory of Water Resource & Hydropower Engineering Science, School of Water Resources and Hydropower Engineering, Wuhan University, Wuhan 430072, China
  • Received:2016-08-27 Online:2017-05-26 Published:2017-05-26
  • Supported by:
    Supported by National Natural Science Foundation of China (U1503282, 41672229, 41172206)

Abstract: The migration behavior and distribution of dense non-aqueous phase liquid(DNAPL)in subsurface are greatly influenced by geological heterogeneity. To fully understand the DNAPL source-zone architecture, parameter estimation is needed to characterize the permeability heterogeneity in multiphase flow simulation. The data assimilation method based on ensemble Kalman filter (EnKF) is applied to solve this parameter estimation problem. The performances of EnKF are investigated and compared by applying EnKF to a real-world and a synthetic DNAPL infiltration experiment in a two-dimensional laboratory-scale sandbox. The factors to control the performance of data assimilation in multiphase flow are also discussed. The results showed that the EnKF method can effectively estimate multiphase model parameters via DNAPL saturation observations. With the increased sampling density in spatial and time scale, EnKF exhibits a promotion of computational accuracy. Especially, EnKF method can produce satisfactory estimation when increasing the spatial sampling density in the high DNAPL-saturation region.

Key words: dense non-aqueous phase liquid, heterogeneity, permeability, ensemble Kalman filter, parameter estimation

CLC Number: 

  • P641.69
[1] 施小清,姜蓓蕾,吴吉春,等. 非均质介质中重非水相污染物运移受泄漏速率影响数值分析[J]. 水科学进展,2012,23(3): 376-382. Shi Xiaoqing, Jiang Beilei, Wu Jichun, et al. Numerical Analysis of the Effect of Leakage Rate on Dense Non-Aqueous Phase Liquid Transport in Heterogonous Porous Media[J]. Advances in Water Science, 2012,23(3): 376-382.
[2] 郑菲,高燕维,施小清,等. 地下水流速及介质非均质性对重非水相流体运移的影响[J]. 水利学报,2015,46(8): 925-933. Zheng Fei, Gao Yanwei, Shi Xiaoqing, et al. Influence of Groundwater Flow Velocity and Geological Heterogeneity on DNAPL Migration in Saturated Porous Media[J]. Journal of Hydraulic Engineering, 2015,46(8): 925-933.
[3] Gerhard J I, Pang T W, Kueper B H. Time Scales of DNAPL Migration in Sandy Aquifers Examined via Numerical Simulation[J]. Ground Water, 2007, 45(2): 147-157.
[4] 杨宾,李慧颖,伍斌,等. 4种NAPLs污染物在二维砂箱中的指进锋面形态特征研究[J]. 环境科学,2013,34(4): 1545-1552. Yang Bin, Li Huiying, Wu Bin, et al. Sand Box Study on Fingering Front Morphology for NAPLs Infiltrated in Homogeneous Porous Media[J]. Environmental Science,2013,34(4): 1545-1552.
[5] 黄倩,王锦国,陈舟,等. 黏滞性对LNAPL在非饱和多孔介质中优先流影响的试验研究[J]. 河海大学学报(自然科学版),2015,43(1): 66-71. Huang Qian, Wang Jinguo, Chen Zhou, et al. Experimental Study of Impacts of Viscosity of LNAPL on Preferential Flow in Unsaturated Porous Media[J]. Journal of Hohai University(Natural Sciences),2015,43(1): 66-71.
[6] Nsir K, Schäfer G, Roupert R D C, et al. Laboratory Experiments on DNAPL Gravity Fingering in Water-Saturated Porous Media[J]. International Journal of Multiphase Flow, 2012, 40: 83-92.
[7] 施小清,吴吉春,刘德朋,等. 饱和介质中重非水相液体运移的数值模拟及敏感性分析[J]. 南京大学学报(自然科学版),2011,47(3): 299-307. Shi Xiaoqing, Wu Jichun, Liu Depeng, et al. Numerical Simulation of Transportation of Dense Non Aqueous Phase Liquids in the Subsurface Environment[J]. Journal of Nanjing University (Nature Science),2011,47(3): 299-307.
[8] Fagerlund F, Niemi A, Illangasekare T H. Modeling of Nonaqueous Phase Liquid (NAPL) Migration in Heterogeneous Saturated Media: Effects of Hysteresis and Fluid Immobility in Constitutive Relations[J],Water Resources Research, 2006, 44: 893-897.
[9] 白静,赵勇胜,陈子方,等. 孔隙介质特性影响Tween80溶液冲洗修复NAPL污染含水层模拟实验[J]. 吉林大学学报(地球科学版),2012,42(增刊3): 239-244. Bai Jing, Zhao Yongsheng, Chen Zifang, et al. Experimental Simulation of Porous Medium Characteristics on Tween80 Solution Flushing of NAPL from Contaminated Aquifer[J]. Journal of Jilin University (Earth Science Edition),2012,42(Sup.3): 239-244.
[10] 郑菲,高燕维,孙媛媛,等. 污染源区结构特征对Tween 80去除DNAPL效果的影响[J]. 中国环境科学,2016,36(7): 2035-2042. Zheng Fei, Gao Yanwei, Sun Yuanyuan,et al. The Influence of Source-Zone Architecture on DNAPL Removal by Tween 80 Flushing[J]. Environmental Science,2016,36(7): 2035-2042.
[11] 程洲,吴吉春,徐红霞,等. DNAPL在透镜体及表面活性剂作用下的运移研究[J]. 中国环境科学,2014,34(11): 2888-2896. Cheng Zhou, Wu Jichun, Xu Hongxia, et al. Investigation of the Migration Characteristic of DNAPL in Aquifer with Lenses and Under the Action of Surfactant Flushing[J]. China Environmental Science,2014,34(11): 2888-2896.
[12] 张蔚,施小清,吴剑锋,等. 渗透率空间变异性对重非水相流体运移的影响[J]. 高校地质学报,2013,19(4): 677-682. Zhang Wei, Shi Xiaoqing, Wu Jianfeng, et al. Impacts of the Spatial Variation of Permeability on the Transport of Dense Non-Aqueous Phase Liquids in Porous Media[J]. Geological Journal of China Universities,2013,19(4): 677-682.
[13] Yang Z, Zandin H, Niemi A, et al. The Role of Geological Heterogeneity and Variability in Water Infiltration on Non-Aqueous Phase Liquid Migration[J]. Environmental Earth Sciences,2013, 68(7): 2085-2097.
[14] 邓亚平,郑菲,施小清,等. 多孔介质中DNAPLs运移行为研究进展[J]. 南京大学学报(自然科学),2016,52(3): 409-420. Deng Yaping, Zheng Fei, Shi Xiaoqing, et al. Review on the Transport of Dense Non-Aqueous Phase Liquids in Porous Media[J]. Journal of Nanjing University (Natural Sciences),2016,52(3): 409-420.
[15] Yeh W W. Review: Optimization Methods for Groun-dwater Modeling and Management[J]. Hydrogeology Journal,2015, 23(6): 1051-1065.
[16] 王景瑞,胡立堂,尹文杰. iTOUGH2反演模型在地下水模拟中的应用[J]. 水文地质工程地质,2015,42(1): 35-41. Wang Jingrui, Hu Litang, Yin Wenjie. Application of iTOUGH2 to Groundwater Modeling[J]. Hydrogeology & Engineering Geology,2015,42(1): 35-41.
[17] Lee S J, Mcpherson B J, Vasquez F G. Leakage Pathway Estimation Using iTOUGH2 in a Multiphase Flow System for Geologic CO2 Storage[J]. Environmental Earth Sciences,2015, 74(6): 5111-5128.
[18] 陆乐,吴吉春. 地下水数值模拟不确定性的贝叶斯分析[J]. 水利学报,2010,41(3): 264-271. Lu Le, Wu Jichun. Bayesian Analysis of Uncertainties in Groundwater Numerical Simulation[J]. Journal of Hydraulic Engineering,2010,41(3): 264-271.
[19] 陆乐,吴吉春,陈景雅. 基于贝叶斯方法的水文地质参数识别[J]. 水文地质工程地质,2008,35(5): 58-63. Lu Le, Wu Jichun, Chen Jingya, et al. Identification of Hydrogeological Parameters Based on the Bayesian Method[J]. Hydrogeology & Engineering Geology,2008,35(5): 58-63.
[20] Finsterle S. iTOUGH2 User's Guide[R]. Berkeley:Lawrence Berkeley National Laboratory,1999.
[21] Liang B. An Ensemble Kalman Filter Modulefor Au-tomatic History Matching[D]. Austin: University of Texas,2007.
[22] Oliver D S, Chen Y. Recent Progress on Reservoir History Matching: A Review[J]. Computational Geosciences,2011, 15(1): 185-221.
[23] Oliver D S, Reynolds A C, Liu N. Inverse Theory for Petroleum Reservoir Characterization and History Matching[J]. Journal of Affective Disorders,2008, 175C: 488-493.
[24] Evensen G. Sequential Data Assimilation with a No-nlinear Quasi-Geostrophic Model Using Monte Carlo Methods to Forecast Error Statistics[J]. Journal of Geophysical Research,1994, 99(C5): 10143-10162.
[25] Kalman R E. A New Approach to Linear Filtering and Prediction Theory[J]. J Basic Eng Trans Asme,1960, 82D(1): 35-45.
[26] Song X, Shi L, Ye M, et al. Numerical Comparison of Iterative Ensemble Kalman filters for Unsaturated Flow Inverse Modeling[J].Vadose Zone Journal,2014, 13(2):1-12.
[27] Geir N, Johnsen L M, Aanonsen S I, et al. Reservoir Monitoring and Continuous Model Updating Using Ensemble Kalman Filter[J]. Society of Petroleum Engineers Journal,2003, 10(1): 66-74.
[28] Jahanbakhshi S, Pishyaie M R, Boozarjomehry R B. Joint Estimation of Absolute and Relative Permeabilities Using Ensemble-Based Kalman Filter[J]. Journal of Natural Gas Science and Engineering,2015, 26: 1232-1245.
[29] Panzeri M, Riva M, Guadagnini A, et al. Data Assi-milation and Parameter Estimation via Ensemble Kalman Filter Coupled with Stochastic Moment Equations of Transient Groundwater Flow[J]. Water Resources Research,2013, 49: 1334-1344.
[30] Liao Q, Zhang D. Data Assimilation for Strongly Nonlinear Problems by Transformed Ensemble Kalman Filter[J]. Society of Petroleum Engineers Journal,2015, 20(1): 202-221.
[31] Man J, Li W, Zeng L, et al. Data Assimilation for Unsaturated Flow Models with Restart Adaptive Probabilistic Collocation Based Kalman Filter[J]. Advances in Water Resources,2016, 92: 258-270.
[32] Erdal D, Rahman M A, Neuweiler I. The Importance of State Transformations when Using the Ensemble Kalman filter for Unsaturated Flow Modeling: Dealing with Strong Nonlinearities[J]. Advances in Water Resources,2015, 86: 354-365.
[33] Pruess K, Oldenburg C, Moridis G. TOUGH2 User's Guide Version 2.0[R]. Berkeley: Lawrence Berkeley National Laboratory,1999.
[34] 杨艳林,许天福,李佳琦,等. 应用TOUGH模拟二氧化碳地质储存过程的复杂地质体建模技术与实现[J]. 吉林大学学报(地球科学版),2014, 44(4): 1307-1313. Yang Yanlin, Xu Tianfu, Li Jiaqi, et al. Complex Geological Body Modeling and Implementation of CO2 Geological Storage Simulation Using TOUGH[J]. Journal of Jilin University (Earth Science Edition),2014, 44(4): 1307-1313.
[35] 郭亮亮,张延军,许天福,等. 大庆徐家围子不同储层改造的干热岩潜力评估[J]. 吉林大学学报(地球科学版),2016,46(2):525-535. Guo Liangliang,Zhang Yanjun,Xu Tianfu,et al. Evaluation of Hot Dry Rock Resource Potential Under Different Reservoir Conditions in Xujiaweizi Area,Daqing[J]. Journal of Jilin University(Earth Science Edition), 2016, 46(2):525-535.
[36] 李正伟, 张延军, 郭亮亮,等. 松辽盆地北部干热岩开发水热产出预测[J]. 吉林大学学报(地球科学版), 2015, 45(4):1189-1197. Li Zhengwei,Zhang Yanjun,Guo Liangliang,et al. Prediction of Hydrothermal Production from Hot Dry Rock Development in Northern Songliao Basin. [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(4):1189-1197.
[37] Falta R W, Pruess K, Finsterle S, et al. T2VOC User's Guide[R]. Berkeley: Lawrence Berkeley National Laboratory,1995.
[38] 高燕维,郑菲,施小清,等. 基于透射光法探讨水流流速对DNAPL运移分布的影响[J]. 环境科学, 2015,36(7): 2532-2539. Gao Yanwei, Zheng Fei, Shi Xiaoqing, et al. Laboratory Investigation of DNAPL Migration Behavior and Distribution at Varying Flow Velocities Based on Light Transmission Method[J]. Environmental Science,2015,36(7): 2532-2539.
[39] 章艳红,叶淑君,吴吉春. 光透法定量两相流中流体饱和度的模型及其应用[J]. 环境科学,2014,35(6): 2120-2128. Zhang Yanhong, Ye Shujun, Wu Jichun. Models for Quantification of Fluid Saturation in Two-Phase Flow System by Light Transmission Method and Its Application[J]. Environmental Science,2014,35(6): 2120-2128.
[40] 史良胜,杨金忠,李少龙,等. 基于KL-Galerkin解法的地下水流动随机分析[J]. 四川大学学报(工程科学版),2005,37(5): 31-35. Shi Liangsheng, Yang Jinzhong, Li Shaolong, et al. Stochastic Analysis of Subsurface Flow Based on KL-Galerkin Method[J]. Journal of Sichuan University(Engineering Science Edition),2005,37(5): 31-35.
[41] 史良胜,杨金忠,陈伏龙,等. Karhunen-Loeve展开在土性各向异性随机场模拟中的应用研究[J]. 岩土力学,2007,28(11): 2303-2308. Shi Liangsheng, Yang Jinzhong, Chen Fulong, et al. Research on Application of Karhunen-Loeve Expansion to Simulating Anisotropic Random Field of Soil Property[J]. Rock and Soil Mechanics,2007,28(11): 2303-2308.
[42] 张秋汝,史良胜,林琳,等. 非饱和土壤水的集合卡尔曼滤波:Ⅱ:不一致性问题解决方法比较[J]. 水利学报,2015,46(12): 1470-1478. Zhang Qiuru, Shi Liangsheng, Lin Lin, et al. Ensemble Kalman Filter for Unsaturated Soil Water Flow: Ⅱ:Comparison of Methods to Deal with Inconsistency[J]. Journal of Hydraulic Engineering,2015,46(12): 1470-1478.
[43] 施小清,吴吉春,袁永生. 渗透系数空间变异性研究[J]. 水科学进展,2005,16(2): 210-215. Shi Xiaoqing, Wu Jichun, Yuan Yongsheng. Study on the Spatial Variability of Hydraulic Conductivity[J]. Advances in Water Science,2005,16(2): 210-215.
[44] 史良胜,张秋汝,宋雪航,等. 地下水位在非饱和水流数据同化中的应用[J]. 水科学进展,2015, 26(3): 404-412. Shi Liangsheng, Zhang Qiuru, Song Xuehang, et al. Application of Groundwater Level Data to Data Assimilation for Unsaturated Flow[J]. Advances in Water Science,2015, 26(3): 404-412.
[45] 曹少华,曾献奎,蒋建国,等. 基于局域化集合卡尔曼滤波的含水层弥散度场识别研究[J]. 南京大学学报(自然科学),2016,52(3): 429-437. Cao Shaohua, Zeng Xiankui, Jiang Jianguo, et al. An Approach Based on Localized Ensemble Kalman Filter to Identify Groundwater Dispersivity Field [J]. Journal of Nanjing University (Natural Sciences), 2016,52(3): 429-437.
[46] 宋雪航,史良胜,杨金忠. 基于集合卡尔曼滤波的潜水动态预测方法[J]. 武汉大学学报(工学版),2014,47(3): 324-331. Song Xuehang, Shi Liangsheng, Yang Jinzhong. Application of Ensemble Kalman Filter to Phreatic Water Flow[J]. Journal of Wuhan University (Engineering Science Edition),2014,47(3): 324-331.
[47] Chen Y, Zhang D. Data Assimilation for Transient Flow in Geologic Formations via Ensemble Kalman Filter[J]. Advances in Water Resources,2006, 29(8): 1107-1122.
[48] 崔凯鹏,吴吉春. 观测数据时空密度对集合卡尔曼滤波计算精度的影响[J]. 水利学报,2013,44(8): 915-923. Cui Kaipeng, Wu Jichun. Effect of Observation Data Time/Spatial Density on Ensemble Kalman Filter[J]. Journal of Hydraulic Engineering,2013,44(8): 915-923.
[49] Nan T, Wu J. Groundwater Parameter Estimation Using the Ensemble Kalman Filter with Localization[J]. Hydrogeology Journal, 2011, 19(3): 547-561.
[1] Li Yalong, Yu Xinghe, Shan Xin, Wang Jiao, Shi Xin, Hu Peng. Evaluation on Sealing Capability of Shanxi Formation in Southeast Ordos Basin [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(4): 1070-1082.
[2] Zhang Hengrong, He Shenglin, Wu Jinbo, Wu Yixiong, Liang Yunan. A New Method for Predicting Permeability Based on Modified Kozeny-Carmen Equation [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(3): 899-906.
[3] Yin Songyu, Zhao Dajun, Zhou Yu, Zhao Bo. Numerical Simulation and Experiment of the Damage Process of Heterogeneous Rock Under Ultrasonic Vibration [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(2): 526-533.
[4] Jia Zhenzhen, Lin Chengyan, Ren Lihua, Dong Chunmei, Gong Bao. Diagenesis and Reservoir Quality Evolution of Low Permeability Tuffaceous Sandstones in Suderte Oilfield [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(6): 1624-1636.
[5] Li Shiwen, Yin Changchun, Weng Aihua. Full-Time Inversion of Time-Domain AEM Data for Resistivity and Magnetic Permeability [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(6): 1830-1836.
[6] Liu Li, Bai Hanggai, Liu Na, Ming Xiaoran, Jiang Lingxu. Petrological Characteristics and Research Significance of Detrital Clays in the Pluvial Seasonal River Sandstones [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(4): 1071-1079.
[7] Liu Renqiang, Duan Yonggang, Tan Fengqi, Liu Hongxian, Qu Huailin. Research on Flow Patterns and Evolution Characteristics of Low Permeable Fractured Reservoir Based on Well Test Data: A Case from Huoshaoshan Oilfield in Junggar Basin [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(2): 610-616.
[8] Zhao Jun, Dai Xinyun, Gu Li, Qi Xinzhong, Chen Weizhong. Method of Permeability Model Establishment Based on the Complex Reservoir Controlled by Particle-Size [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(1): 279-285.
[9] Zheng Xiangwei, Wu Jian, He Shenglin, Hu Xiangyang, Liang Yunan. Fine Evaluation of Permeability of Conglomerate Reservoir Based on Flow Unit [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(1): 286-294.
[10] Li Fulai, Wang Shitou, Miao Shunde, Yang Junxia, Xu Zhiyao, Li Wenshuai. Characteristics of Low Permeability Reservoirs and Main Controlling Factors of High Quality Reservoirs of Chang 63 Member in Huaqing Area [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(6): 1580-1588.
[11] Yue Chongwang, Yang Xiaoming, Zhong Xiaoqin, Pan Baozhi, Wang Fei. Evaluation of Formation Heterogeneity Using Lorentz Coefficient of Logging Curves [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(5): 1539-1546.
[12] You Li,Zhang Yingzhao, Li Cai,Zhang Shaonan,Zhao Zhanjie. Based on Analysis of Sedimentary-Diagenetic Reservoir Facies to Determine “Sweet Spots” Distribution in Low Permeability from Wenchang 9 Area [J]. Journal of Jilin University(Earth Science Edition), 2014, 44(5): 1432-1440.
[13] Chen Rongbo,Shu Longcang,Lu Chengpeng,Li Wei. Experimental Study on the Characteristic Parameters Variation of the Aquifer Caused by Aquifer Compaction [J]. Journal of Jilin University(Earth Science Edition), 2013, 43(6): 1958-1965.
[14] Huo Siyuan,Jin Menggui,Liang Xing. Impacts of Low-Permeability Clay Lens in Vadose Zone onto Rainfall Infiltration and Groundwater Recharge Using Numerical Simulation of Variably Saturated Flow [J]. Journal of Jilin University(Earth Science Edition), 2013, 43(5): 1579-1587.
[15] Gao Yongli,Sun Wei,Zhang Xin. Microscopic Geologic Origin for Ultra-Low Permeability Reservoir of Yanchang Groups, Ordos Basin [J]. Journal of Jilin University(Earth Science Edition), 2013, 43(1): 13-19.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!