Journal of Jilin University(Earth Science Edition)

Previous Articles     Next Articles

Development and Application of Real Time Groundwater Quality Prediction System: An Example in Lower Liaohe River Plain

Du Chao1, Xiao Changlai2, Lü Jun1, Tian Haoran1   

  1. 1.Songliao Institute of Water Environment Science, Songliao River Basin Water Resources Protection Bureau, Changchun130021, China;
    2.College of Environment and Resources, Jilin University, Changchun130021, China
  • Received:2013-12-19 Online:2014-09-26 Published:2014-09-26

Abstract:

Groundwater numerical simulation requires mass monitoring data as basic support. The input of data requires much time and energy, which may cause fault and could not predict groundwater quality immediately. Using VB language, based on calibrated and validated numerical model of groundwater flow and solute transport of Lower Liaohe River Plain, re-compiled MF2K and MT3DMS as calculation kernel programs, Microsoft SQL Server 2000 as database, the interface of real time groundwater monitoring system is established, integration of Lower Liaohe River Plain groundwater quality real-time forecast model is established, and the operation system is developed, achieving the function of real time groundwater quality prediction in Lower Liaohe River Plain. The system combines real-time monitoring technology with the groundwater numerical simulation technology. It has advantages of simple operation, strong timeliness and small error probability. The system can collect real time data of groundwater level and quality, and predict future groundwater level and groundwater solute concentration immediately. Meanwhile, update interface is pre-set to improve prediction accuracy according to accumulated groundwater monitoring data and calculated data.

CLC Number: 

  • P641
[1] Shu Longcang, Li Shulei, Wang Song, Keremu Abudumijiti, Lu Chengpeng, Li Yange, Li Wei. Selection of Risk Evaluation Index for Safe Water Supply in Karst Water Source: An Example of the Well Field of Niangziguan Spring [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(3): 805-814.
[2] Zhang Haiyan, Peng Tongtong, Wen Yujuan, Gao Simeng, Yang Yuesuo. Microbial Diversity of Mineral Spring and Its Geological and Environmental Controls in Yaoquan Mountain, Wuda-Lianchi of NE China [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(3): 815-826.
[3] Ye Xueyan, Li Mingjie, Du Xinqiang, Fang Min, Jia Sida. Selection of Suitable Facility Types of Sponge City Based on Geological Conditions [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(3): 827-835.
[4] Huang Xing, Lu Ying, Liu Xiao, Duan XiaoFei, Zhu Limin. Impact of Groundwater Level Rising on Suspended Solids Clogging During Artificial Recharge [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(6): 1810-1818.
[5] Shu Longcang, Xu Yang, Wu Peipeng. Groundwater Flow Numeric Simulation Method Based on Uncertainties of MODFLOW Parameters [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(6): 1803-1809.
[6] Zhao Xiaoer, Chang Yong, Peng Fu, Wu Jichun. Experimental Study of Solute Transport in Pool-Pipe System and Its Significance on Karst Hydrogeology [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(4): 1219-1228.
[7] Tan Jiahua, Lei Hongwu. Three Dimension Model Construction for TOUGH2 Based on GMS and Comparison of Simulations [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(4): 1229-1235.
[8] Chen Peng, Shan Xuanlong, Hao Guoli, Zhao Rongsheng, Zhou Jian. Faults and Karsts Controlled Geothermal Genesis Model of Xianrenqiao Hot Spring in Changbai Mountain [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(4): 1236-1246.
[9] Kang Xueyuan, Shi Xiaoqing, Shi Liangsheng, Wu Jichun. Inverse Multiphase Flow Simulation Using Ensemble Kalman Filter: Application to a 2D Sandbox Experiment of DNAPL Migration [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(3): 848-859.
[10] Dong Weihong, Meng Ying, Wang Yushan, Wu Xiancang, Lü Ying, Zhao Hui. Hydrochemical Characteristics and Formation of the Shallow Groundwater in Fujin,Sanjiang Plain [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(2): 542-553.
[11] Song Yang, Gu Hongbiao, Li Haijun, Chi Baoming. Comparison Analysis of Co-Seismic Response Characteristics of Groundwater Level at Two Sides of Fault: A Case Study of Dahuichang Observation Wells in the Middle of Babaoshan Fault in Beijing [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(6): 1815-1822.
[12] Liu Guoqing, Wu Shiqiang, Fan Ziwu, Zhou Zhifang, Xie Chen, Wu Jingxiu, Liu Yang. Analytical Derivation on Recharge and Periodic Backwashing Process and the Variation of Recharge Pressure [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(6): 1799-1807.
[13] Yuan Xiaojie, Guo Zhanrong, Huang Lei, Zhang Bin, Ma Zhiyong, Liu Jie. Estimating Submarine Groundwater Discharge into the Jiaozhou Bay Using 226Ra [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(5): 1490-1500.
[14] Zou Youqin, Liu Li, Li Hongqing, Yan Chun, Zeng Masun, Lan Yingying. Hydrogeological Conditions Control of Shale Gas Exploration [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(3): 824-830.
[15] Chen Meng, Wu Yong, Gao Dongdong, Chang Ming. Shallow Groundwater Hydrogeochemical Evolution Process and Controlling Factors in Plain Zone of Guanghan City [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(3): 831-843.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!