Journal of Jilin University(Earth Science Edition) ›› 2021, Vol. 51 ›› Issue (4): 1006-1018.doi: 10.13278/j.cnki.jjuese.20200122

Previous Articles     Next Articles

A Method for Plane Segmentation of Small-Scale Intraplate Strike-Slip Faults: A Case of the Middle-North Segment of Shunbei No. 5 Fault in Tarim Basin

Lin Bo1,2, Yun Lu3, Zhang Xu4, Xiao Chongyang1, Kuang Anpeng1, Xu Xuechun2, Cao Zicheng4   

  1. 1. Exploration and Production Research Institute, Sinopec Northwest Oilfield Company, Urumqi 830011, China;
    2. College of Earth Sciences, Jilin University, Changchun 130061, China;
    3. Sinopec Northwest Oilfield Company, Urumqi 830011, China;
    4. Yakela Gas Production Plant of Sinopec Northwest Oilfield Company, Kuche 842003, Xinjiang, China
  • Received:2020-05-15 Online:2021-07-26 Published:2021-08-02
  • Supported by:
    Supported by the National Science and Technology Major Project (2017ZX05005-002), the Project of Northwest Oilfield Company, Sinopec (KJ201738),the Project of Science and Technology Department,Sinopec (P21033-1,P21071) and China Postdoctoral Science Foundation (2018M6331865)

Abstract: In recent years, major oil and gas breakthroughs have been made around the No. 1 and No. 5 strike-slip fault zones in Shunbei area, which reveals that the small-scale strike-slip faults developed in Tarim basin have the characteristics of controlling reservoir and reservoir of fault-controlled oil and gas reservoirs. The strike-slip faults cut through several sets of Paleozoic strata in the section, which complicates the longitudinal structures that show a style of deep linear strike-slip superimposed shallow echelon normal fault in space. Drilling reveals that the productivity of wells is significantly different in different sections of the fault zone, and the segmentations of the strike-slip faults at the top interface of Ordovician carbonate rocks plays an important role in controlling oil and gas accumulation. The middle-north section of Shunbei No. 5 fault is selected as the research object based on the correlation between the fault distances and segment lengths at different scales and the theory of multi-fault evolution. A method is proposed to carry out segmental research on the deep linear strike-slip faults by using the changes of statistical vertical distances along the strike faults. This method is universal, and it can be used to study the segmentation of different types of faults, combining with the intensity of fault activity, the degree of evolution, and the structural shape of the section, so as to analyze the segmentation characteristics of the faults. The study shows that the middle-north part of No. 5 fault can be divided into 14 segments at the top interface of Ordovician carbonate rocks and 10 segments at the top interface of Cambrian gypsum-salt strata. The fault segmentations of the two strata have the characteristics of inheritance and differential evolution in space. The result shows that the escape of gypsum salt from the detachment structure of the Cambrian gypsum salt rock has a destructive effect on the drainage of oil and gas; While the intensity of the fault activity, segmented overlap pattern, and different positions of fault segments on the top of Ordovician carbonate rocks play an important role in controlling the development scale of fault-controlled fracture-cave reservoirs. This implies that the segmented characteristics and vertical structure of in-plane faults play an important role in controlling fracture-cave hydrocarbon accumulation.

Key words: strike-slip fault, fault segmentation, fault-controlled reservoir of fracture-cave, Shunbei area, Tarim basin

CLC Number: 

  • TE122.2
[1] Fossen H. Structural Geology[M]. Cambridge:Cambridge University Press, 2010.
[2] Busby C,Pérez A. Tectonics of Sedimentary Basins[M].[L.n.]:Wiley, 2011.
[3] Cunningham W D, Mann P. Tectonics of Strike-Slip Restraining and Releasing Bends[J]. Geological Society London Special Publications, 2007, 290(1):1-12.
[4] Riller U, Clark M D, Daxberger H, et al. Fault-Slip Inversions:Their Importance in Terms of Strain, Heterogeneity, and Kinematics of Brittle Deformation-Science Direct[J]. Journal of Structural Geology, 2017, 101:80-95.
[5] Hensen C, Scholz F, Nuzzo M, et al. Strike-Slip Faults Mediate the Rise of Crustal-Derived Fluids and Mud Volcanism in the Deep Sea[J]. Geology, 2015, 43(4):339-342.
[6] Woodcock N H, Fischer M. Strike-Slip Duplexes[J]. Journal of Structural Geology, 1986, 8(7):725-735.
[7] 李萌, 汤良杰, 李宗杰, 等. 走滑断裂特征对油气勘探方向的选择:以塔中北坡顺1井区为例[J]. 石油实验地质, 2016,38(1):113-121. Li Meng, Tang Liangjie, Li Zongjie, et al. Fault Characteristics and Their Petroleum Geology Significance:A Case Study of Well Shun-1 on the Northern Slope of the Central Tarim Basin[J]. Petroleum Geology & Experiment, 2016, 38(1):113-121.
[8] 马德波, 邬光辉, 朱永峰, 等. 塔里木盆地深层走滑断层分段特征及对油气富集的控制:以塔北地区哈拉哈塘油田奥陶系走滑断层为例[J]. 地学前缘, 2019, 26(1):225-237. Ma Debo, Wu Guanghui, Zhu Yongfeng, et al. Segmentation Characteristics of Deep Strike Slip Faults in the Tarim Basin and Its Control on Hydrocarbon Enrichment:Taking the Ordovician Strike Slip Fault in the Halahatang Oilfield in the Tabei Area as an Example[J]. Earth Scinece Frontiers, 2019, 26(1):225-237.
[9] Lin B, Zhang X, Xu X, et al. Features and Effects of Basement Faults on Deposition in the Tarim Basin[J]. Earth Science Reviews, 2015, 145:43-55.
[10] Choi J H, Edwards P, Ko K, et al. Definition and Classification of Fault Damage Zones:A Review and a New Methodological Approach[J]. Earth Science Reviews, 2016, 152:70-87.
[11] 邓尚, 李慧莉, 张仲培, 等. 塔里木盆地顺北及邻区主干走滑断裂带差异活动特征及其与油气富集的关系[J]. 石油与天然气地质, 2018, 39(5):878-888. Deng Shang, Li Huili, Zhang Zhongpei, et al. Characteristics of Differential Activities in Major Strike-Slip Fault Zones and Their Control on Hydrocarbon Enrichment in Shunbei Area and Its Surroundings,Tarim Basin[J]. Oil & Gas Geology, 2018, 39(5):878-888.
[12] 李映涛, 漆立新, 张哨楠, 等. 塔里木盆地顺北地区中-下奥陶统断溶体储层特征及发育模式[J]. 石油学报, 2019, 40(12):1470-1484. Li Yingtao, Qi Lixin, Zhang Shaonan, et al. Characteristics and Development Modeofthe Middle and Lower Ordovician Fault-Karstres Ervoirin Shunbei Area, Tarim Basin[J]. Acta Petrolei Sinica, 2019, 40(12):1470-1484.
[13] 吕海涛, 张哨楠, 马庆佑. 塔里木盆地中北部断裂体系划分及形成机制探讨[J]. 石油实验地质, 2017, 39(4):444-452. Lü Haitao, Zhang Shaonan, Ma Qingyou. Classification and Formation Mechanism of Fault Systems in the Central and Northern Tarim Basin[J]. Petroleum Geology & Experiment, 2017, 39(4):444-452.
[14] 郑孟林, 王毅, 金之钧, 等. 塔里木盆地叠合演化与油气聚集[J]. 石油与天然气地质, 2014, 35(6):925-934. Zheng Menglin, Wang Yi, Jin Zhijun, et al. Superimposition, Evolution and Petroleum Accumulation of Tarim Basin[J]. Oil & Gas Geology, 2014, 35(6):925-934.
[15] 黄诚. 叠合盆地内部小尺度走滑断裂幕式活动特征及期次判别:以塔里木盆地顺北地区为例[J]. 石油实验地质, 2019, 41(3):379-389. Huang Cheng.Multi-Stage Activity Characteristics of Small-Scale Strike-Slip Faults in Superimposed Basin and Its Identification Method:A Case Study of Shunbei Area, Tarim[J]. Petroleum Experimental Geology, 2019, 41(3):379-389.
[16] 邓尚, 李慧莉, 韩俊, 等. 塔里木盆地顺北5号走滑断裂中段活动特征及其地质意义[J]. 石油与天然气地质, 2019, 40(5):990-998,1073. Deng Shang, Li Huili, Han Jun, et al. Characteristics of Differential Activities in Major Strike-Slip Fault Zones and Their Control on Hydrocarbon Enrichment in Shunbei Areaand Its Surroundings,Tarim Basin[J]. Oil & Gas Geology, 2019, 40(5):990-998,1073.
[17] Kim Y S,Sanderson D J. The Relationship Between Displacement and Length of Faults:A Review[J]. Earth Science Reviews, 2005, 68(3/4):317-334.
[18] Aydin A, Berryman J G. Analysis of the Growth of Strike-Slip Faults Using Effective Medium Theory[J]. Journal of Structural Geology, 2010, 32(11):1629-1642.
[19] Kim Y S, Andrews J R, Sanderson D J. Damage Zones Around Strike-Slip Fault Systems and Strike-Slip Fault Evolution, Crackington Haven, Southwest England[J]. Geosciences Journal, 2000, 4(2):53-72.
[20] Kim Y S, Sanderson D J. Inferred Fluid Flow Through Fault Damage Zones Based on the Observation of Stalactites in Carbonate Caves[J]. Journal of Structural Geology, 2010, 32(9):1305-1316.
[21] Khalil S M, Mcclay K R. 3D Geometry and Kinematic Evolution of Extensional Fault-Related Folds, NW Red Sea, Egypt[J]. Geological Society London Special Publications, 2016:SP439.11.
[22] Aydin A, Joussineau G D. The Relationship Between Normal and Strike-Slip Faults in Valley of Fire State Park, Nevada, and Its Implications for Stress Rotation and Partitioning of Deformation in the East-Central Basin and Range[J]. Journal of Structural Geology, 2014, 63(3):12-26.
[23] 鞠玮, 侯贵廷, 潘文庆, 等. 塔中Ⅰ号断裂带北段构造裂缝面密度与分形统计[J].地学前缘, 2011, 18(3):317-323. Ju Wei, Hou Guiting, Pan Wenqing, et al. The Density and Fractals of Structural Fractures in Northern Segment of Tazhong No.1 Fault, Xinjiang, China[J]. Earth Science Frontiers, 2011, 18(3):317-323.
[24] 张庆莲, 侯贵廷, 潘文庆, 等. 构造裂缝的分形研究[J]. 应用基础与工程科学学报, 2011, 19(6):853-861. Zhang Qinglian, Hou Guiting, Pan Wenqing, et al. Fractal Study on Structural Fracture[J]. Journal of Applied Basic and Engineering Sciences, 2011, 19(6):853-861.
[25] Kim Y S, Sanderson D J. Structural Similarity and Variety at the Tips in a Wide Range of Strike-Slip Faults:A Review[J]. Terra Nova, 2006, 18(5):330-344.
[26] Mcclay K R, Bonora M. Analog Models of Restraining Stepovers in Strike-Slip Fault Systems[J]. Aapg Bulletin, 2001, 85(2):233-260.
[27] Richard P D. Experimental Models of Strike-Slip Tectonics[J]. Petroleum Geoscience, 1995, 1(1):71-80.
[28] 汤良杰. 略论塔里木古生代盆地演化[J]. 现代地质, 1997,11(1):14-20. Tang Liangjie. A Discussion on Palaozoic Tectonic Evoluton of Tarim Basin, Northwest China[J]. Geosciences,1997, 11(1):14-20.
[29] 汤良杰, 邱海峻, 云露, 等. 塔里木盆地多期改造晚期定型复合构造与油气战略选区[J]. 吉林大学学报(地球科学版), 2014, 44(1):1-14. Tang Liangjie, Qiu Haijun, Yun Lu, et al. Poly-Phase Reform-Late-Stage Finalization Composite Tectonics and Strategic Area Selection of Oil and Gas Resources in Tarim Basin, NW China[J]. Journal of Jilin University(Earth Science Edition), 2014, 44(1):1-14.
[30] 汤良杰, 张一伟, 金之钧, 等. 塔里木盆地、柴达木盆地的开合旋回[J]. 地质通报, 2004, 23(3):254-260. Tang Liangjie, Zhang Yiwei, Jin Zhijun, et al. Opening-Closing Cycles of the Tarim and Qaidam Basins Northwestern China[J]. Geological Bulletin of China, 2004, 23(3):254-260.
[31] 韩晓影, 汤良杰, 曹自成, 等. 塔中北坡"复合花状"构造发育特征及成因机制[J]. 地球科学, 2018, 43(2):525-537. Han Xiaoying, Tang Liangjie, Cao Zicheng, et al. Characteristics and Formation Mechanism of Composite Flower Structures in Northern Slope of Tazhong Uplift, Tarim Basin[J].Earth Science, 2018, 43(2):525-537.
[32] 韩强, 云露, 蒋华山,等.塔里木盆地顺北地区奥陶系油气充注过程分析[J]. 吉林大学学报(地球科学版), 2021, 51(3):645-658. Han Qiang, Yun Lu, Jiang Huashan, et al. Marine Oil and Gas Filling and Accumulation Process in the North of Shuntuoguole Area in Northern Tarim Basin[J]. Journal of Jilin University (Earth Science Edition), 2021, 51(3):645-658.
[33] 林波,张旭,况安鹏,等. 塔里木盆地走滑断裂构造变形特征及其油气意义:以顺北地区1号和5号断裂为例[J]. 石油学报,2021,42(7):906-923. Lin Bo, Zhang Xu, Kuang Anpeng, et al. Structural Deformation Characteristics of Strike-Slip Faults in Tarim Basin and Its Hydrocarbon Significance:A Case of Shunbei No.1 Fault and No.5 Fault[J]. Acta Petrolei Sinica, 2021, 42(7):906-923.
[1] Han Qiang, Yun Lu, Jiang Huashan, Shao Xiaoming, Jin Xianmei. Marine Oil and Gas Filling and Accumulation Process in the North of Shuntuoguole Area in Northern Tarim Basin [J]. Journal of Jilin University(Earth Science Edition), 2021, 51(3): 645-658.
[2] Chen Xiuyan, Wang Jian, Zhang Liping, Ma Debo, Zhou Bo. Sedimentary Characteristics and Genesis of Carbonate Cements in Carboniferous Donghe Sandstone Member, Hanilcatam Area of Tarim Basin [J]. Journal of Jilin University(Earth Science Edition), 2020, 50(2): 509-517.
[3] Yang Geng, Chen Zhuxin, Liu Yinhe, Wang Xiaobo. A Basement-Involved Structure Above Oblique-Slip Tumuxiuke Fault in Northern Margin of Bachu Uplift in Tarim Basin, Northwest China [J]. Journal of Jilin University(Earth Science Edition), 2019, 49(5): 1209-1221.
[4] Wang Yuxiang, Gu Yi, Fu Qiang, Wang Bin, Wan Yanglu, Li Yingtao. Characteristics and Genesis of Deep Carbonate Reservoirs in Shunbei Area [J]. Journal of Jilin University(Earth Science Edition), 2019, 49(4): 932-946.
[5] Yan Wei, Zhang Guangxue, Fan Tailiang, Xia Bin, Gao Zhiqian, Zhang Li, Yang Zhen, Qiang Kunsheng. Sedimentary Characteristics of Carbonate Shoals of Ordovician Lianglitage Formation in Tazhong and Shuntuoguole Area, Tarim Basin [J]. Journal of Jilin University(Earth Science Edition), 2019, 49(3): 621-636.
[6] Luo Shaohui, Li Jiumei, Wang Hui. Age Determination of Dolomite Breccia in Well PSBX1 of Markit Slope in Tarim Basin [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(5): 1405-1415.
[7] Guo Chuntao, Li Ruyi, Chen Shumin. Rare Earth Element Geochemistry and Genetic Model of Dolomite of Yingshan Formation in Gucheng Area, Tarim Basin [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(4): 1121-1134.
[8] Li Wenqiang, Guo Wei, Sun Shouliang, Yang Xuhai, Liu Shuai, Hou Xiaoyu. Research on Hydrocarbon Accumulation Periods of Palaeozoic Reservoirs in Bachu-Maigaiti Area of Tarim Basin [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(3): 640-651.
[9] Li Ang, Ju Linbo, Zhang Liyan. Relationship Between Hydrocarbon Accumulation and Paleo-Mesozoic Tectonic Evolution Characteristics of Gucheng Lower Uplift in Tarim Basin [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(2): 545-555.
[10] Chen Feiran, Zhang Ying, Xu Zuxin, Tan Cheng, Zhou Xiaoxiao. Petroleum Geological Characteristics and Main Control Factors of Oil and Gas Accumulations in the Global Precambrian-Cambrian Petroliferous Basin [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(4): 974-989.
[11] Niu Jun, Huang Wenhui, Ding Wenlong, Jiang Wenlong, Zhang Yamei, Qi Lixin, Yun Lu, Lü Haitao. Carbon and Oxygen Isotope Characteristics and Its Significance of Ordovician Carbonates in Yubei Area of Maigaiti Slope [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(1): 61-73.
[12] Du Zhili, Zeng Changmin, Qiu Haijun, Yang Youxing, Zhang Liang. Key Formations of the Permian Hydrocarbon Source Rocks and Oil-Source Correlation of well KD1 in Yecheng Depression of Southwestern Tarim Basin [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(3): 651-660.
[13] Xue Haitao, Tian Shansi, Lu Shuangfang, Liu Min, Wang Weiming, Wang Min. Significance of Dissipated Soluble Organic Matter as Gas Source [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(1): 52-60.
[14] Zhao Yonggang, Chen Jingshan, Li Ling, Gu Yonghong, Zhang Chunyu, Zhang Dongliang, Zhang Wenqiang, Zhou Tong. Evaluation of Carbonate Reservoir Based on Residual Karst Intensity Characterization and Structural Fracture Prediction:A Case from the Upper Ordovician Lianglitage Formation in the West of Center Tarim Basin [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(1): 25-36.
[15] Tang Liangjie,Qiu Haijun,Yun Lu,Yang Yong,Xie Daqing,Li Meng, Jiang Huashan. Poly-Phase Reform-Late-Stage Finalization Composite Tectonics and Strategic Area Selection of Oil and Gas Resources in Tarim Basin,NW China [J]. Journal of Jilin University(Earth Science Edition), 2014, 44(1): 1-14.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Chun-bai,ZHANG Xin-tao,LIU Li,REN Yan-guang,MENG Peng. The Thermal Fluid Activities and Their Modification on Volcaniclastic Rock in Budate Group-An Example from the Beier Sag of Hailaer Basin[J]. J4, 2006, 36(02): 221 -0226 .
[2] ZOU Xin-ning,SUN Wei,ZHANG Meng-bo,WAN Yu-jun. The Application of Seismic Attributes Analysis to Lithologic Gas Reservoir Description[J]. J4, 2006, 36(02): 289 -0294 .
[3] GUO Hong-jin, LI Yong, ZHONG Jian-hua, WANG Hai-qiao. Carbonate Reservoir Properties in Member 1 of Shahejie Formation of Paleogene in the Dongxin Oilfield, Shandong Province[J]. J4, 2006, 36(03): 351 -357 .
[4] DU Ye-bo,JI Han-cheng,ZHU Xiao-min. Research on the Diagenetic Facies of the Upper Triassic Xujiahe Formation in the Western Sichuan Foreland Basin[J]. J4, 2006, 36(03): 358 -364 .
[5] LIU Jia-jun, LI Zhi-ming,LIU Jian-ming,WANG Jian-ping,FENG Cai-xia, LU Wen-quan. Mineralogy of the Stibnite-Antimonselite Series in the Nature[J]. J4, 2005, 35(05): 545 -553 .
[6] SU Ji-jun, YIN Kun, GUO Tong-tong. Optimization of the JointThread of Diamond WireLine Coring Drill Pipe[J]. J4, 2005, 35(05): 677 -680 .
[7] TANG Jian-sheng, XIA Ri-yuan, ZOU Sheng-zhang, LIANG Bin. Characteristics of Karst Medium System and Its Hydrogeologic Effect in the South Tianshan, Xinjiang[J]. J4, 2005, 35(04): 481 -0486 .
[8] XIONG Bin. Inverse Spline Interpolation for the Calculation of All-Time Resistivity for the Large-Loop Transient Electromagnetic Method[J]. J4, 2005, 35(04): 515 -0519 .
[9] DU Chun-guo, ZOU Hua-yao, SHAO Zhen-jun,ZHANG Jun. Formation Mechanism and Mode of Sand Lens Reservoirs[J]. J4, 2006, 36(03): 370 -376 .
[10] XU Sheng-wei,WANG Ming-chang,BAI Ya-hui,ZHANG Xue-ming. A Study and Implementation of the Distributed Publication Service of Massive Imagery Data Based on J2EE[J]. J4, 2006, 36(03): 491 -496 .