吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (5): 1347-1354.doi: 10.13229/j.cnki.jdxbgxb.20230005

• 交通运输工程·土木工程 • 上一篇    

进口集装箱堆场箱位分配与场桥调度协同优化

朱瑾(),刘洋   

  1. 上海海事大学 物流科学与工程研究院,上海 201306
  • 收稿日期:2023-01-04 出版日期:2024-05-01 发布日期:2024-06-11
  • 作者简介:朱瑾(1980-),女,副教授,博士.研究方向:大规模优化,工程系统的调度与决策,多自主系统的协调控制.E-mail:zqw202212@163.com
  • 基金资助:
    国家自然科学基金项目(62073212);上海市浦江人才计划项目(16PJC043)

Integrated optimization of storage space allocation and yard crane scheduling in import container yards

Jin ZHU(),Yang LIU   

  1. Institute of Logistics Science and Engineering,Shanghai Maritime University,Shanghai 201306,China
  • Received:2023-01-04 Online:2024-05-01 Published:2024-06-11

摘要:

针对场桥作业均衡和效率问题,设计了分时段平衡策略(TPBS),考虑了场桥之间作业安全距离和堆场容量的约束,建立了一个混合整数规划模型,以最大限度地减少双场桥的作业量方差和作业总时间,为了求解建立的模型并分析算例,开发了模拟退火遗传算法(SAGA)。通过不同算法对比实验和3种平衡策略在集装箱数量为80~500个时的对比实验及分析,实验结果表明:SAGA对比于GA和SA的目标值分别平均降低7.32%、20.66%,分时段平衡策略可以均衡场桥作业任务量,缩短集装箱装卸任务的完成时间,有效地提高了堆场空间的利用率,并有助于提高场桥的整体作业效率。

关键词: 分时段平衡策略, 箱位分配, 场桥调度, 混合整数规划模型, 模拟退火遗传算法

Abstract:

Aiming at the problem of balance and efficiency of yard crane operation, a time phased balance strategy (TPBS) is designed. Considering the constraints of safe distance between yard cranes and yard capacity, a mixed integer programming model is established to minimize the variance of workload and total operation time of double yard cranes. In order to solve the established model and analyze the calculation example, Simulated annealing genetic algorithm (SAGA) is developed. Through the comparative experiments of different algorithms and the comparative experiments and analysis of three balancing strategies when the number of containers is 80~500, the experimental results show that the target values of SAGA are reduced by 7.32% and 20.66% respectively compared with GA and SA. The time division balancing strategy can promote the balance of yard crane operation, shorten the completion time of container loading and unloading tasks, effectively improve the utilization of yard space, and help improve the overall operation efficiency of yard crane.

Key words: time-phased balancing strategy, storage space allocation, yard crane scheduling, mixed integer programming model, simulated annealing genetic algorithm

中图分类号: 

  • U169.6

图1

船舶与箱区段的匹配示意图"

图2

染色体示意图"

图3

交叉和变异操作"

图4

算法流程图"

表1

箱区各贝位中初始堆存箱量"

贝位号箱量贝位号箱量贝位号箱量
162194114
2822114211
31023124314
4624144410
5132510458
6162612469
714278477
810286486
9122984910
10133075010
1116317517
126325528
136339539
147347544
15935105512
16113613567
17737115710
18143814588
1983911599
2054096012

表2

不同策略的比较"

规模文献[11]策略TPBS
方差总时间/min目标值作业效率/(箱·h-1方差总时间/min目标值作业效率/(箱·h-1
808300.75154.3815.960275.98137.9917.39
12018439.83228.9216.370410.96205.4817.52
15018556.24287.1216.180515.76257.8817.45
200128717.27422.6416.730681.43340.7217.61
3002001089.59644.8016.5201036.87518.4417.36
5002421817.081029.5416.5101743.17871.5917.21

图5

不同时间段大小的目标值变化情况"

图6

算法收敛过程图"

表3

算法与CPLEX的对比实验"

规模CPLEXSAGAGASA
OBJT/sOBJGAP/%T/sOBJGAP/%T/sOBJGAP/%T/s
80128.542786.3137.997.35974.5161.9225.971836.6203.8258.571305.6
120193.463266.5205.486.211137.6228.6318.182217.5286.1747.921746.6
150239.454733.5257.887.701859.7286.1819.523834.9350.8846.543446.8
200322.626352.7340.725.612463.6371.2815.085014.8437.1935.514682.5
300491.639236.2518.445.453915.4554.3712.768275.5653.8432.997615.3
500829.3519582.3871.595.097859.8913.9710.2015952.71 007.4621.4813672.5

图7

贝位分配和场桥调度甘特图"

1 田宇, 周强, 朱本飞. 自动化集装箱码头双循环AGV与场桥的集成调度研究[J]. 交通运输系统工程与信息, 2020, 20(4): 216-223.
Tian Yu, Zhou Qiang, Zhu Ben-fei. Integrated scheduling of dual-cycle AGV and yard crane at automated container terminal[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(4): 216-223.
2 Chang Y M, Zhu X N. A novel two-stage heuristic for solving storage space allocation problems in rail-water intermodal container terminals[J]. Symmetry-Basel, 2019, 11(10): 1-18.
3 Maldonado S, Gonzalez-ramirez R G, Quijada F, et al. Analytics meets port logistics: a decision support system for container stacking operations[J]. Decision Support Systems, 2019, 121(6): 84-93.
4 Lin D Y, Chiang C W. The storage space allocation problem at a container terminal[J]. Maritime Policy&Management, 2017, 44(6): 685-704.
5 倪敏敏,苌道方. 基于动态平衡策略下的集装箱堆场箱位分配方案研究[J]. 计算机应用研究, 2019, 36(8): 2363-2367.
Ni Min-min, Chang Dao-fang. Storage space allocation based on dynamic strategy in container terminal yard[J]. Application Research of Computers, 2019, 36(8): 2363-2367.
6 武慧荣, 朱晓宁, 邓红星. 集装箱海铁联运港口混堆堆场箱区均衡分配模型[J]. 重庆交通大学学报: 自然科学版, 2018, 37(4): 109-115.
Wu Hui-rong, Zhu Xiao-ning, Deng Hong-xing. Container space equilibrium assignment model of the mixed storage yard in container sea-rail port[J]. Journal of Chongqing Jiaotong University (Natural Science), 2018, 37(4): 109-115.
7 倪全慧, 梁承姬. 基于作业量平衡的集装箱堆场堆存策略研究[J]. 武汉理工大学学报, 2012, 34(3):75-79.
Ni Quan-hui, Liang Cheng-ji. The stock strategy research of container port yard based on working balance[J]. Journal of Wuhan University of Technology, 2012, 34(3): 75-79.
8 Jiang X J, Chew E P, Lee L H, et al. Flexible space-sharing strategy for storage yard management in a transshipment hub port[J]. OR Spectrum, 2013, 35(2): 417-439.
9 Han X L, Wang Q, Huang J. Scheduling cooperative twin automated stacking cranes in automated container terminals[J]. Computers & Industrial Engineering, 2019, 128(2): 553-558.
10 王志超, 丁一. 考虑箱区作业均衡的自动化码头集装箱船舶配载计划[J]. 计算机应用, 2021, 41(): 299-303.
Wang Zhi-chao, Ding Yi. Stowage planning for container ships in automatic container terminal considering yard workload balance[J]. Journal of Computer Applications, 2021, 41(Sup.2): 299-303.
11 Zhou C H, Wang W C, Li H B. Container reshuffling considered space allocation problem in container terminals[J]. Transportation Research Part E: Logistics and Transportation Review, 2020, 136(4): 1-23.
12 王清永, 曲伟强. 基于线性规划的城市轨道交通运行调度优化算法[J]. 吉林大学学报: 工学版, 2023, 53(12): 3446-3451.
Wang Qing-yong, Qu Wei-qiang. Optimization algorithm of urban rail transit operation scheduling based on linear programming[J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(12): 3446-3451.
13 焦玉玲, 张鹏, 田广东,等. 基于多种群遗传算法的自动化立体库货位优化[J]. 吉林大学学报: 工学版, 2018, 48(5): 1398-1404.
Jiao Yu-ling, Zhang Peng, Tian Guang-dong, et al. Slotting optimization of automated warehouse based on multi-population GA[J]. Journal of Jilin University (Engineering and Technology Edition), 2018, 48(5): 1398-1404.
14 郑红星, 隋延清, 贺国燕. 集装箱码头海侧作业资源配置的仿真优化[J]. 计算机仿真, 2020, 37(6): 136-141.
Zheng Hong-xing, Sui Yan-qing, He Guo-yan. Simulation optimization of the allocation of terminal's seaside operating resources[J]. Computer Simulation, 2020, 37(6): 136-141.
[1] 赵伟;李文辉;夏云飞 . 基于非线性规划的凸多面体间碰撞检测算法[J]. 吉林大学学报(工学版), 2008, 38(03): 676-0679.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!