吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (6): 1580-1591.doi: 10.13229/j.cnki.jdxbgxb.20230077

• 综述 • 上一篇    

环境激励下桥梁模态参数识别的频谱方法综述

张云龙1(),张家源1,钱雪松1(),张攀2,杨润超3   

  1. 1.吉林建筑大学 交通科学与工程学院,长春 130118
    2.长春市建设工程安全监督站,长春 130012
    3.吉林省公路管理局,长春 130021
  • 收稿日期:2023-01-30 出版日期:2023-06-01 发布日期:2023-07-23
  • 通讯作者: 钱雪松 E-mail:zhangyunlong@jlju.edu.cn;qianxuesong@jlju.edu.cn
  • 作者简介:张云龙(1975-),男,教授,博士.研究方向:桥梁结构力学分析.E-mail:zhangyunlong@jlju.edu.cn
  • 基金资助:
    吉林省科技发展计划项目(20220203068SF)

Spectrum⁃driven methods for modal parameter identification of bridge under environmental excitation

Yun-long ZHANG1(),Jia-yuan ZHANG1,Xue-song QIAN1(),Pan ZHANG2,Run-chao YANG3   

  1. 1.School of Communication Science and Engineering,Jilin Jianzhu University,Changchun 130118,China
    2.Changchun Construction Project Safety Supervision Station,Changchun 130012,China
    3.Jilin Province Highway Administration,Changchun 130021,China
  • Received:2023-01-30 Online:2023-06-01 Published:2023-07-23
  • Contact: Xue-song QIAN E-mail:zhangyunlong@jlju.edu.cn;qianxuesong@jlju.edu.cn

摘要:

首先,对基于频谱驱动的模态参数识别过程中的常用模型进行了梳理和总结。其次,讨论了两种最常用的频域识别技术,即峰值拾取法和复模态指示函数法,其中峰值拾取法是从输出测量谱的峰值中选择模态频率,而复模态指示函数法通过将频谱矩阵进行对角化实现结构模态参数的识别。此外,将复模态指示函数应用于功率谱密度,形成了频域分解方法。最后,讨论了多参考最小二乘复频域方法,该方法具有内存需求低、计算时间短以及自动化程度高等特征,因此其在桥梁结构的模态参数识别中具有良好的应用前景。

关键词: 桥梁结构, 模态参数, 参数识别, 环境激励, 频域识别技术

Abstract:

Firstly, the models used in parameter identification were summarized. Then, two popular techniques for frequency-domain identification were discussed, namely the Peak Picking method and the Complex Mode Indication Function method. The Peak Picking method is performed by selecting the modal frequency from the peak value of the output spectrum measured. While the Complex Mode Indication Function method is performed by diagonalizing the spectrum matrix. In addition, when the Complex Mode Indication Function is applied to the power spectral density, it becomes the reputed Frequency-Domain Decomposition method. Finally, the poly-reference Least Squares Complex Frequency domain method was discussed. This method shows advantages of low memory requirement, short computing time and high degree of automation, lying promising application in the operational modal analysis of bridge.

Key words: bridge structure, modal parameter, parameter identification, environmental excitation, frequency-domain techniques

中图分类号: 

  • U441.4
1 Reynders E. System identification methods for (operational) modal: review and comparison[J]. Archives of Computational Methods in Engineering, 2012, 19(1): 51-124.
2 Tan G J, Li H, Wang W S, et al. A rapid evaluation method based on natural frequency for post-earthquake traffic capacity of small and medium span bridges[J]. Engineering Structures, 2023, 280: No.115681.
3 Ljung L. System Identification: Theory for the User[M]. Upper Saddle River:Prentice Hall, 1999.
4 Heylen W, Lammens S, Sas P. Modal Analysis Theory and Testing[M]. Leuven: Katholieke Universiteit Leuven, 1997.
5 Maia N M M, Silva J M M. Theoretical and Experimental Modal Analysis[M]. Taunton: Research Studies Press, 1997.
6 Ewins D J. Modal Testing[M]. Baldock: Research Studies Press, 2000.
7 Pintelon R, Schoukens J. System Identification[M]. New York: IEEE Press, 2001.
8 Prevosto M. Algorithmes identification des caractéristiques vibratoires de structures mécaniques complexes[D]. Rennes: Université de Rennes, 1982.
9 Bendat J S, Piersol A G. Engineering Applications of Correlation and Spectral Analysis[M]. New York: Wiley-Interscience, 1980.
10 Brincker R, Zhang L, Anderden P. Modal identification from ambient responses using frequency domain decomposition[C]∥Proceedings of 18th IMAC, San Antonio, USA, 2000: 625-630.
11 Shih C Y, Tsuei Y G, Allemang R J, et al. Complex mode indication function and its applications to spatial domain parameter estimation[J]. Mechanical Systems and Signal Processing, 1988, 2(4): 367-377.
12 刘宇飞, 辛克贵, 樊健生, 等. 环境激励下结构模态参数识别方法综述[J]. 工程力学,2014, 31(4): 46-53.
Liu Yu-fei, Xin Ke-gui, Fan Jian-sheng, et al. A review of structure modal identification methods through ambient excitation[J]. Engineering Mechanics, 2014, 31(4): 46-53.
13 沈方伟, 杜成斌. 环境激励下结构模态参数识别方法综述[J]. 电子测试, 2013, 5: 178-181.
Shen Fang-wei, Du Cheng-bin. An overview of modal identification from ambient responses[J]. Electronic Test, 2013, 5: 178-181.
14 Brincker R, Ventura C, Andersen P. Damping estimation by frequency domain decomposition[C]∥Proceedings of the 19th International Modal Analysis Conference (IMAC), San Antonio, USA, 2000: 698-703.
15 van der Auweraer H, Guillaume P, Verboven P, et al. Application of a fast-stabilizing frequency domain parameter estimation method[J]. Journal of Dynamic Systems, Measurement, and Control, 2001, 123(4): 651-658.
16 Guillaume P, Verboven P, Vanlanduit S. Frequency-domain maximum likelihood identification of modal parameters with confidence intervals[J/OL]. [2023-01-15].
17 Guillaume P, Hermans L, Vander A H. Maximum likelihood identification of modal parameters from operational data[C]∥Proceedings of the 17th International Modal Analysis Conference, Florida, 1999: 1887-1893.
18 Guillaume P, Verboven P, Vanlanduit S, et al. A poly-reference implementation of the least squares complex frequency domain-estimator[C]∥Proceedings of the 21st International Modal Analysis Conference, Florida, USA, 2003: 1-9.
19 Peeters B, Van der Auweraer H, Guillaume P, et al. The PolyMAX frequency-domain method: a new standard for modal parameter estimation[J]. Shock and Vibration, 2004, 11(3/4): 395-409.
20 Magalhães F, Cunhan Á. Explaining operational modal analysis with data from an arch bridge[J]. Mechanical Systems and Signal Processing, 2011, 25:1431-1450.
21 Peeters B, Roeck G D. Stochastic system Identification for operational modal analysis: a review[J]. Journal of Dynamic Systems, Measurement, and Control, 2001, 123: 659-667.
22 Juang J N. Applied System Identification[M]. New Jersey: Prentice Hall, 1994.
23 Peeters B. System identification and damage detection in civil engineering[D]. Leuven: Katholieke Universiteit Leuven, 2000.
24 Akaike H. Markovian representation of stochastic processes and its application to the analysis of autoregressive moving average processes[J]. Annals of the Institute of Statistical Mathematics, 1974, 26: 363-387.
25 Söderström T, Stoica P. Instrumental Variable Methods for System Identification[M]. New York: Springer, 1983.
26 Cauberghe B. Applied frequency-domain system identification in the field of experimental and operational modal analysis[D]. Brussel: Vrije Universiteit, 2004.
27 Reynders E. System identification and modal analysis in structural mechanics[D]. Leuven: Katholieke Universiteit, 2009.
28 Caines P. Linear Stochastic Systems[M]. New York: Wiley, 1998.
29 Golub G H, van Loan C F. Matrix Computations[M]. Baltimore: The Johns Hopkins University Press, 1996.
30 Hasan A, Danial M, Ahmad Z, et al. Enhanced frequency domain decomposition algorithm: a review of a recent development for unbiased damping ratio estimates[J]. Journal of Vibroengineering, 2018, 20(5): 1919-1936
31 Le T P, Paultre P. Modal identification based on the time-frequency domain decomposition of unknown-input dynamic tests[J]. International Journal of Mechanical Sciences, 2013, 71: 41-50.
32 Clough R W, Penzien J. Dynamics of Structures[M]. New York: McGraw-Hill, 1993.
33 Schoukens J, Pintelon R. Identification of Linear Systems: a Practical Guideline to Accurate Modelling[M]. London: Pergamon Press, 1991.
34 Pintelon R, Guillaume P, Rolain Y, et al. Parametric identification of transfer functions in the frequency domain-a survey[J]. IEEE Transactions on Automatic Control, 1994, 39(11): 2245-2260.
35 Vanlanduit S, Guillaume P, Schoukens J. High spatial resolution modal parameter estimation using a parametric MLE-like algorithm[C]∥Proceedings of ISMA23, International Conferenceon Noise and Vibration Noise and Vibration Engineering, Leuven, Belgium, 1998: 401-408.
36 Pintelon R, Schoukens J. Box-Jenkins identification revisited—part I: theory[J]. Automatica, 2006, 42(1): 63-75.
37 Pintelon R, Rolain Y, Schoukens J. Box-jenkins identification revisited—part II: applications[J]. Automatica, 2006, 42(1): 77-84.
38 Peeters B, Auweraer H. Polymax: a revolution in operational modal analysis, proceedings of the IOMAC[C]∥International Operational Modal Analysis Conference, Copenhagen, Denmark, 2005: No. 16131728.
[1] 武立群,张亮亮. 基于数据挖掘技术的桥梁结构健康状态检测[J]. 吉林大学学报(工学版), 2020, 50(2): 565-571.
[2] 刘巧斌,史文库,陈志勇,骆联盟,苏志勇,黄开军. 混合可靠性模型参数的核密度和引力搜索估计[J]. 吉林大学学报(工学版), 2019, 49(6): 1818-1825.
[3] 宋军, 石雪飞, 阮欣. 大体积混凝土热学参数识别的优化[J]. 吉林大学学报(工学版), 2018, 48(5): 1418-1425.
[4] 杨越东, 陈吉清, 兰凤崇, 周云郊. 基于焊点参数识别的白车身动态特性[J]. 吉林大学学报(工学版), 2017, 47(5): 1379-1386.
[5] 程永春, 郭庆林, 谭国金. 沥青混合料黏弹性参数的改进识别 [J]. , 2012, (03): 629-633.
[6] 刘寒冰, 吴春利, 程永春. 不同适应度函数的遗传算法在桥梁结构传感器布设中的应用[J]. 吉林大学学报(工学版), 2012, 42(01): 51-56.
[7] 姜浩, 郭学东. 基于地震激励的混凝土桥梁模态参数识别[J]. 吉林大学学报(工学版), 2011, 41(增刊2): 185-188.
[8] 程永春,谭国金,刘寒冰,付聪 . 基于特征解统计特性的桥梁损伤识别[J]. 吉林大学学报(工学版), 2008, 38(04): 812-816.
[9] 王丽娅,孟广伟,陈介中. 激励下的线性结构系统局部刚度参数识别[J]. 吉林大学学报(工学版), 2006, 36(01): 1-0004.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!