吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (10): 2978-2983.doi: 10.13229/j.cnki.jdxbgxb.20230372
• 计算机科学与技术 • 上一篇
摘要:
本文提出了一种基于自适应莱维(Lévy)多样性机制的改进蚁群优化(SACO)算法解决算法存在收敛精度差、易陷入局部最优的问题,并将新算法应用到焊接梁工程优化问题中。SACO算法结合该机制随机步长搜索的特点提升种群多样性,使算法避免局部最优。进一步,本文设计了一系列实验测试SACO算法的性能。实验结果显示,该算法在函数实验中表现出更好的收敛性、更高的精度及更强的避免陷入局部最优的能力。最后在工程应用实验结果中,SACO算法在函数优化和焊接梁优化上展现出较强的竞争力,可作为现实工程问题求解的有效工具。
中图分类号:
1 | Socha K, Dorigo M. Ant colony optimization for continuous domains[J]. European Journal of Operational Research, 2008, 185(3): 1155-1173. |
2 | Zhao D, Liu L, Yu F H,et al. Ant colony optimization with horizontal and vertical crossover search: fundamental visions for multi-threshold image segmentation[J]. Expert Systems with Applications, 2021, 167(114122): 1-38. |
3 | 赵鑫, 杨雄飞, 钱育蓉. 改进的蚁群优化算法求解旅行商问题[J]. 计算机工程与设计,2022, 43(4): 962-968. |
Zhao Xin, Yang Xiong-fei, Qian Yu-rong. Improved ant colony optimization algorithm for TSP[J].Computer Engineering and Design, 2022, 43(4): 962-968. | |
4 | 肖耀涛. 基于改进蚁群优化算法的云计算资源调度[J]. 微型电脑应用, 2022, 38(2): 160-163. |
Xiao Yao-tao.Cloud computing resource scheduling based on improved ant colony optimization algorithm[J].Microcomputer Applications, 2022, 38(2): 160-163. | |
5 | 朱显辉, 于越, 师楠, 等.BP神经网络的分层优化研究及其在风电功率预测中的应用[J].高压电器,2022, 58(2): 158-170. |
Zhu Xian-hui, Yu Yue, Shi Nan, et al. Research on hierarchical optimization of bp neural network and its application in wind power prediction[J].High Voltage Apparatus, 2022, 58(2): 158-170. | |
6 | Islam M A, Qi H, RenY T, et al. An inverse simulation for simultaneous identification of randomly oriented arbitrarily shaped particle size distribution and its degree of non-sphericity from spectral transmittance measurement[J]. Measurement Science and Technology, 2021, 32(7): No.075205. |
7 | Wang Z H, Zhang W J, Liu B, et al. A joint and dynamic routing approach to connected vehicles via LEO constellation satellite networks[J]. Wireless Networks, 2021(2021): No.02712. |
8 | 赵东, 臧雪柏, 赵宏伟. 基于果蝇优化的随机森林预测方法[J]. 吉林大学学报: 工学版, 2017, 47(2): 609-614. |
Zhao Dong, Zang Xue-bai, Zhao Hong-wei. Random forest prediction method based on optimization of fruit fly[J].Journal of Jilin University (Engineering and Technology Edition), 2017, 47(2): 609-614. | |
9 | Xiao J, Li C Q, Zhou J. Minimization of energy consumption for routing in high-density wireless sensor networks based on adaptive elite ant colony optimization[J]. Journal of Sensors, 2021, 2021(2): No.5590951. |
10 | Xiong N, Zhou X Z, Yang X Q,et al. Mobile robot path planning based on time taboo ant colony optimization in dynamic environment[J]. Frontiers in Neurorobotics, 2021, 15: No.642733. |
11 | Zhao D, Liu L, Yu F H, et al. Chaotic random spare ant colony optimization for multi-threshold image segmentation of 2D Kapur entropy[J]. Knowledge-Based Systems, 2021, 216(15): No.106510. |
12 | Brociek R, Wajda A, Slota D. Inverse problem for a two-dimensional anomalous diffusion equation with a fractional derivative of the riemann-liouville type[J]. Energies, 2021, 14(11): 1-17. |
13 | 赵东, 孙明玉, 朱金龙, 等. 结合粒子群和单纯形的改进飞蛾优化算法 [J]. 吉林大学学报: 工学版,2018, 48(6): 1867-1872. |
Zhao Dong, Sun Ming-yu, Zhu Jin-long, et al. Improved moth-flame optimization method based on combination of particle swarm optimization and simplex method[J].Journal of Jilin University (Engineering and Technology Edition), 2018, 48(6): 1867-1872. | |
14 | García S, Fernández A, Luengo J,et al. Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power[J]. Information Sciences, 2010, 180(10): 2044-2064. |
15 | Derrac J, García S, Molina D, et al. A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms[J]. Swarm and Evolutionary Computation, 2011, 1(1): 3-18. |
16 | Storn R, Price K. Differential evolution-a simple and efficient heuristic for global[J]. Optimization over Continuous Spaces, 1997, 11(4): 341-359. |
17 | Mirjalili S, Lewis A.The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51-67. |
18 | Kennedy J, Eberhart R. Particle swarm optimization[C]//Proceedings of ICNN'95-International Conference on Neural Networks, Perth, Australia, 1995: No.488968. |
19 | Cai Z N, Gu J H, Luo J, et al. Evolving an optimal kernel extreme learning machine by using an enhanced grey wolf optimization strategy[J]. Expert Systems with Applications, 2019,138: No.112814. |
20 | Nenavath H, Jatoth R K. Hybridizing sine cosine algorithm with differential evolution for globaloptimization and object tracking[J]. Applied Soft Computing, 2018, 62: 1019-1043. |
21 | 兰淼淼, 胡黄水, 王婷婷, 等. 基于改进鲸鱼优化PID的无刷直流电机转速控制算法[J]. 吉林大学学报: 理学版, 2024, 62(3): 704-712. |
Lan Miao-miao, Hu Huang-shui, Wang Ting-ting, et al. Speed control algorithm of brushless DC motor based on improved whale optimization PID[J]. Journal of Jilin University(Science Edition), 2024, 62(3): 704-712. | |
22 | 李汝嘉, 贺壹婷, 季荣彪, 等. 基于量子行为花朵授粉算法优化LSTM模型[J]. 吉林大学学报: 理学版, 2024, 62(5): 1163-1178. |
Li Ru-jia, He Yi-ting, Ji Rong-biao, et al. Optimizing LSTM model based on quantum-inspired flower pollination algorithm[J]. Journal of Jilin University (Science Edition), 2024, 62(5): 1163-1178. | |
23 | 胡黄水, 范新纪, 邓育欢. 基于改进Harris鹰优化的无线传感器网络分簇协议[J]. 吉林大学学报: 理学版, 2024, 62(5): 1228-1234. |
Hu Huang-shui, Fan Xin-ji, Deng Yu-huan. Improved Harris hawk optimization based clustering protocol for wireless sensor networks[J]. Journal of Jilin University(Science Edition), 2024, 62(5): 1228-1234. |
[1] | 管仁初,贺宝润,梁艳春,时小虎. 基于亲缘关系选择的粒子群优化算法[J]. 吉林大学学报(工学版), 2022, 52(8): 1842-1849. |
[2] | 朱航,于瀚博,梁佳辉,李宏泽. 基于电场模型的无人机搜寻改进算法及仿真分析[J]. 吉林大学学报(工学版), 2022, 52(12): 3029-3038. |
[3] | 车翔玖, 张孙旻. 基于异步更新策略的蚁群边缘提取算法[J]. 吉林大学学报(工学版), 2017, 47(5): 1577-1582. |
[4] | 滕志军, 张帆, 宋明辉. 无线传感器网络能量均衡蚁群路由算法[J]. 吉林大学学报(工学版), 2016, 46(1): 327-332. |
[5] | 杨庆芳, 梅朵, 韩振波, 张彪. 基于云计算的蚁群算法求解城市路网最短路径[J]. 吉林大学学报(工学版), 2013, 43(05): 1210-1214. |
[6] | 翟治芬, 严昌荣, 张建华, 张燕卿, 刘爽. 基于蚁群算法和支持向量机的节水灌溉技术优选[J]. 吉林大学学报(工学版), 2013, 43(04): 997-1003. |
[7] | 申铉京, 刘阳阳, 黄永平, 徐铁, 何习文. 求解TSP问题的快速蚁群算法[J]. 吉林大学学报(工学版), 2013, 43(01): 147-151. |
[8] | 焦斌, 熊友平, 顾幸生. 改进的蚁群优化算法在无线传感器网络中的应用[J]. 吉林大学学报(工学版), 2011, 41(增刊1): 215-219. |
[9] | 杨靖1,2,熊伟丽1,秦宁宁1,赵伟3,徐保国1. 用于无线传感器网络的高能效数据收集算法[J]. 吉林大学学报(工学版), 2011, 41(6): 1720-1725. |
[10] | 于滨, 刘鸿婷, 闫博, 杨忠振, 赖禄元. 公交线路网优化的双层模型及其解法[J]. 吉林大学学报(工学版), 2010, 40(02): 402-0405. |
[11] | 陈谋,肖健,姜长生 . 基于改进蚁群算法的无人机三维航路规划[J]. 吉林大学学报(工学版), 2008, 38(04): 991-995. |
[12] | 李静,刘学,赵健 . 基于蚁群寻优的汽车牵引力PID控制参数整定[J]. 吉林大学学报(工学版), 2008, 38(04): 769-772. |
[13] | 段海滨, 王道波, 于秀芬 . 基于云模型的小生境MAX-MIN相遇蚁群算法[J]. 吉林大学学报(工学版), 2006, 36(05): 803-0808. |
|