吉林大学学报(工学版) ›› 2018, Vol. 48 ›› Issue (6): 1827-1837.doi: 10.13229/j.cnki.jdxbgxb20170704

• • 上一篇    下一篇

多异构无人机任务规划的分布式一体化求解方法

吴蔚楠1(),崔乃刚1,郭继峰1,赵杨杨2   

  1. 1. 哈尔滨工业大学 航天学院,哈尔滨 150001
    2. 中国兵器工业集团国营第624厂,哈尔滨 150001
  • 收稿日期:2017-07-05 出版日期:2018-11-20 发布日期:2018-12-11
  • 作者简介:吴蔚楠(1988-),男,博士研究生.研究方向:任务规划,智能决策,飞行器总体设计.E-mail: wuweinan123@126.com
  • 基金资助:
    国家自然科学基金项目(11472090)

Distributed integrated method for mission planning of heterogeneous unmanned aerial vehicles

WU Wei-nan1(),CUI Nai-gang1,GUO Ji-feng1,ZHAO Yang-yang2   

  1. 1. Department of Aerospace Engineering, Harbin Institute of Technology, Harbin 150001,China
    2. No.624, China North Industries Group, Harbin 150001,China
  • Received:2017-07-05 Online:2018-11-20 Published:2018-12-11

摘要:

针对多异构固定翼无人机对已知目标群执行侦查、打击、评估任务的规划问题,提出了一种分布式一体化求解方法,该方法将任务执行耗时约束和协同攻击约束加入到协同任务规划模型(CMTAP)中,基于分布式规划架构,通过改进遗传算法的基因编码方式和相关遗传算子,完成任务分配和航迹生成两个子问题的一体化求解。将任务完成的总时间指标加入到代价函数中,保证了各无人机规划航迹的均匀性。建立固定翼无人机六自由度模型,采用矢量场航迹跟踪算法验证了该方法的可用性,并通过蒙特卡洛数学仿真,验证了该方法的快速性。

关键词: 飞行器设计, 任务分配, 航迹生成, 分布式遗传算法, 异构无人机, Dubins路径

Abstract:

This paper studies the planning problem of investigation, strike and evaluation task for known targets with multi-heterogeneous fixed wing Unmanned Aerial Vehicles (UAVs). Firstly, the task execution time-consuming constraints, collaborative attack constraints are added to the cooperative multiple task assignment problem (CMTAP). Then, based on the distributed planning architecture, the integrated solution of the two sub-problems is completed by improving the gene coding method. In order to optimize the uniformity of the UAVs' planning trajectories, the total time index of the task completion is added to the cost function. The feasibility of this method is verified by the six-degree-of-freedom model and the Vector-based path following algorithm. The simulation results show the rapidity of this method.

Key words: flight vehicle design, task assignment, trajectory generation, distributed genetic algorithm, heterogeneous unmanned aerial vehicle, Dubins trajectory

中图分类号: 

  • TP29

图1

任务时间消耗约束图示"

图2

分布式遗传算法的基因编码方式"

表1

参与任务的UAV参数设定"

UAV 巡航速度
/(m·s-1)
初始位置
和航向
/(m,m,(°))
保持的
高度/m
最小转弯
半径/m
极限探测
距离/m
UAV-R 55 (0,0,0) 300 300 520
UAV-C 55 (0,0,0) 350 300 520
UAV-S 65 (0,0,0) 400 260 -
UAV-S 65 (0,0,0) 430 260 -

表2

参与任务的目标参数设定"

目标 位置/m 包括的任务 相应任务需要的
执行时间/s
1 (600,5200) {R,S,V} 5
2 (1120,5800) {R,S,S,V} 5
3 (5600,5350) {R,S,V} 5

表3

分布式遗传算法参数"

Np Ng Ncp Ne Ncro Pmuta
1000 500 10 100 800 0.03

图3

各UAV的规划航迹和实际飞行航迹"

图4

各UAV的定高指令和实际飞行高度曲线"

图5

各UAV的航向角指令和实际飞行航向角曲线"

表4

UAV实际飞行时间与规划飞行时间"

时间 UAV1 UAV2 UAV3 UAV4
实际 297.1 304.3 100.2 236.5
规划 301.9 309.1 105.7 240.9

图6

四架UAV,3个目标工况下不同权重系数对应的3种算法得分"

图7

八架UAV,6个目标工况下不同权重系数对应的3种算法得分"

图8

四架UAV,3个目标工况下3种算法的收敛曲线"

图9

八架UAV,6个目标工况下3种算法的收敛曲线"

[1] Sujit P B, Kingston D, Beard R. Cooperative forest fire monitoring using multiple UAVs [C]//IEEE Conference on Decision and Control, New Orleans, Louisiana,USA, 2007: 4875-4880.
[2] Rathinam S, Sengupta R, Darbha S . A resource allocation algorithm for multivehicle systems with nonholonomic constraints[J]. IEEE Trans Autom Sci Eng, 2007,4(1):98-104.
doi: 10.1109/TASE.2006.872110
[3] Ponda S S, Johnson L B, Geramifard A , et al. Cooperative Mission Planning for Multi-UAV Teams[M]. Netherlands:Springer, 2015: 1447-1490.
[4] 沈林成, 陈璟, 王楠 . 飞行器任务规划技术综述[J]. 航空学报, 2014,35(3):593-606.
doi: 10.7527/S1000-6893.2013.0500
Shen Lin-cheng, Chen Jing, Wang Nan . A survey on task planing technology for aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2014,35(3):593-606.
doi: 10.7527/S1000-6893.2013.0500
[5] Chandler P R, Pachter M, Swaroop D, et al. Complexity in UAV cooperative control [C]//American Control Conference, IEEE, Anchorage,Alaska,USA, 2002: 1831-1836.
[6] Woosley B, Dasgupta P. Multi-robot task allocation with real-time path planning [C]//Proceedings of the Twenty-Sixth International Florida Artificial Intelligence Research Society Conference (FLAIRS-26 Conference), St. Pete Beach, FL, USA, 2013: 574579.
[7] Arsie A, Savla K, Frazzoli E . Efficient routing algorithms for multiple vehicles with no explicit communications[J]. IEEE Transactions on Automatic Control, 2009,54(10):2302-2317.
doi: 10.1109/TAC.2009.2028954
[8] Moon S, Oh E, Shim D H . An integral framework of task assignment and path planning for multiple unmanned aerial vehicles in dynamic environments[J]. Journal of Intelligent & Robotic Systems, 2013,70(1-4):303-313.
doi: 10.1007/s10846-012-9740-3
[9] Rasmussen S J, Shima T . Tree search algorithm for assigning cooperating UAVs to multiple tasks[J]. International Journal of Robust and Nonlinear Control, 2008,18(2):135-153.
doi: 10.1002/rnc.1257
[10] Shima T, Rasmussen S J, Sparks A G , et al. Multiple task assignments for cooperating uninhabited aerial vehicles using genetic algorithms[J]. Computers & Operations Research, 2006,33(11):3252-3269.
doi: 10.1016/j.cor.2005.02.039
[11] Edison E, Shima T . Integrated task assignment and path optimization for cooperating uninhabited aerial vehicles using genetic algorithms[J]. Computers & Operations Research, 2011,38(1):340-356.
doi: 10.1016/j.cor.2010.06.001
[12] Deng Q, Yu J, Wang N . Cooperative task assignment of multiple heterogeneous unmanned aerial vehicles using a modified genetic algorithm with multi-type genes[J]. Chinese Journal of Aeronautics, 2013,26(5):1238-1250.
doi: 10.1016/j.cja.2013.07.009
[13] Zhang X, Chen J, Xin B , et al. A memetic algorithm for path planning of curvature-constrained UAVs per-forming surveillance of multiple ground targets[J]. Chinese Journal of Aeronautics, 2014,27(3):622-633.
doi: 10.1016/j.cja.2014.04.024
[14] Michalewicz Z, Fogel D B . How to Solve It: Modern Heuristics[M]. Berlin:Berlin Springer Science & Business Media, 2013.
[15] Schaefer R. Foundations of Global Genetic Optimization[M]. Berlin: Springer Publishing Company, Incorporated, 2007.
[16] 楚拉多斯·怀特·尚穆加韦尔 . 无人机协同路径规划[M]. 北京: 国防工业出版社, 2011.
[17] Dubins L E . On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangents[J]. American Journal of Mathematics, 1957,79(3):497-516.
doi: 10.2307/2372560
[18] Yoav Gottlieb, Tal Shima . UAVs task and motion planning in the presence of obstacles and prioritized targets[J]. Sensors, 2015,15:29734-29764.
doi: 10.3390/s151129734 pmid: 4701357
[19] Beard R W, McLain T W . Small Unmanned Aircraft: Theory and Practice[M]. New Jersey: Princeton University Press, 2012.
[20] Nelson D, Barber B, McLain T, et al. Vector field path following for small unmanned aerial vehicles [C]//Proceedings of the American Control Conference, Minneapolis, Minnesota, 2006: 5788-5794.
[21] Interval Zero. RTX development guide[EB/OL].[2017-04-30]..
[1] 刘淑华,张嵛,吴洪岩,刘杰. 基于群体智能的多机器人任务分配[J]. 吉林大学学报(工学版), 2010, 40(01): 123-0129.
[2] 王峰, 曹喜滨, 耿云海. 椭圆轨道上在轨服务航天器绕飞轨道设计及控制[J]. 吉林大学学报(工学版), 2006, 36(03): 410-0416.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘庆民,王龙山,陈向伟,李国发. 滚珠螺母的机器视觉检测[J]. 吉林大学学报(工学版), 2006, 36(04): 534 -538 .
[2] 李月英,刘勇兵,陈华 . 凸轮材料的表面强化及其摩擦学特性
[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .
[3] 曲昭伟,陈红艳,李志慧,胡宏宇,魏巍 . 基于单模板的二维场景重建方法[J]. 吉林大学学报(工学版), 2007, 37(05): 1159 -1163 .
[4] 王超,宋克柱,唐进 . 高性能水下地震数据采集系统设计与实现[J]. 吉林大学学报(工学版), 2007, 37(01): 168 -172 .
[5] 包铁,刘淑芬 . 基于通信顺序进程的网络故障管理形式化描述[J]. 吉林大学学报(工学版), 2007, 37(01): 117 -120 .
[6] 许思传,李荣庆,程钦,郭英男,张纪鹏,孙济美,王永富 . 边界条件对乙醇HCCI发动机燃烧的影响[J]. 吉林大学学报(工学版), 2007, 37(01): 74 -78 .
[7] 沈传亮,刘国君,董景石,杨志刚,程光明 . 压电型多振子单腔精密药物输送泵[J]. 吉林大学学报(工学版), 2007, 37(01): 89 -94 .
[8] 邵宝东,孙兆伟,王丽凤 . 微槽冷却热沉结构尺寸的优化设计[J]. 吉林大学学报(工学版), 2007, 37(02): 313 -0318 .
[9] 杨文,石永久,王元清,施刚 . 结构钢焊接残余应力三维有限元分析[J]. 吉林大学学报(工学版), 2007, 37(02): 347 -0352 .
[10] 钱直睿,李明哲,孙刚,谭富星,金文姬 . 球形面多道次多点成形的数值模拟[J]. 吉林大学学报(工学版), 2007, 37(02): 338 -0342 .