吉林大学学报(工学版) ›› 2019, Vol. 49 ›› Issue (5): 1615-1621.doi: 10.13229/j.cnki.jdxbgxb20190194

• • 上一篇    

选区激光熔化304L不锈钢的组织结构及力学性能分析

佟鑫1,2,3(),张雅娇3,黄玉山3,胡正正2,王庆1,2,张志辉1,2()   

  1. 1. 吉林大学 工程仿生教育部重点实验室,长春 130022
    2. 吉林大学 生物与农业工程学院, 长春 130022
    3. 广州恒尚科技有限公司,广州 510705
  • 收稿日期:2019-03-04 出版日期:2019-09-01 发布日期:2019-09-11
  • 通讯作者: 张志辉 E-mail:tongxin_gz@husun.com.cn;zhzh@jlu.edu.cn
  • 作者简介:佟鑫(1982-),男,高级工程师,博士.研究方向:金属增材制造与激光表面改性.E-mail:tongxin_gz@husun.com.cn
  • 基金资助:
    国家重点研发专项项目(2016YFB1100201)

Microstructure and mechanical properties of 304L stainless steel processed by selective laser melting

Xin TONG1,2,3(),Ya-jiao ZHANG3,Yu-shan HUANG3,Zheng-zheng HU2,Qing WANG1,2,Zhi-hui ZHANG1,2()   

  1. 1. Key Laboratory of Bionic Engineering Ministry of Education, Jilin University, Changchun 130022, China
    2. College of Biological and Agricultural Engineering, Jilin University, Changchun 130022
    3. Guangzhou Husun Technologies Co. , Ltd. ,Guangzhou 510705, China
  • Received:2019-03-04 Online:2019-09-01 Published:2019-09-11
  • Contact: Zhi-hui ZHANG E-mail:tongxin_gz@husun.com.cn;zhzh@jlu.edu.cn

摘要:

采用选区激光熔化技术成形304L不锈钢,研究了成形后的显微组织和形貌特征,以及不同构建方向对力学性能的影响。结果表明:304L不锈钢组织中无明显气孔和夹杂缺陷;试样的表面粗糙度随倾斜角度的增大而减小。获得准确完整成形几何特征的前提是,薄壁试样厚度的设计值大于0.3 mm,无支撑圆孔试样直径设计值在1~12.5 mm之间,试样外尖角角度设计值大于5°,试样的内尖角垂直摆放时设计值大于15°,水平摆放时设计值大于8°。不同构建方向对试样的抗拉强度和屈服强度影响不明显,当试样的构建方向与基板呈0°时,试样抗拉强度达到最大值684.7 MPa,当构建方向与基板呈30°时,试样的断后伸长率达到最大为47.7%,同时冲击功达到最大值196.3 J,断裂机制均为韧性断裂。

关键词: 选区激光熔化成形, 304L不锈钢, 组织结构, 力学性能, 形貌特征

Abstract:

304L stainless steel was prepared by selective laser melting (SLM) technology. The microstructure, morphology and mechanical properties of as-fabricated parts were characterized. The results show that no obvious pores and inclusion defects are found in the metallographic structure. The surface roughness of the sample decreases with the increase in the inclination angle during the SLM process. To keep the geometrical characteristics of as-fabricated SLM parts, the thickness of thin-walled specimen should be more than 0.3 mm; the diameter of circular hole without support should be controlled in the range of 1 mm to 12.5 mm; the designed outer sharp angles of the specimen should be more than 5°; the inner sharp angles should be more than 15° when placed vertically to the base plate, and more than 8° when placed horizontally. It is found that the orientation of the specimen axis with respect to the working platform does not influence the tensile strength and yield strength. When the build direction of the specimens is 0° with the base plate, the maximum tensile strength of the specimens reaches 684.7 MPa. When the build direction was 30° with the base plate, the maximum post-fracture elongation of the specimens reaches 47.7%. Meanwhile, the impact energy has the maximum value of 196.3J, and the fracture mechanism is ductile fracture.

Key words: selective laser melting, 304L stainless steel, microstructure, mechanical properties, morphology

中图分类号: 

  • TG430.40

表1

304L不锈钢粉末的化学成分"

元素 质量分数%
C 0.02~0.08
Si ≤1.0
Mn 1.0~2.0
Cr 18.0~20.0
Ni 8.0~12.0
S ≤0.03
P ≤0.045
Mo -
Fe 余量

图1

力学试样尺寸及成形角度设计"

图2

304L试样显微组织"

图3

不同倾斜角度试样表面粗糙度R a的变化曲线"

图4

不同倾斜角度试样三维表面形貌图"

图5

不同 SLM成型角度的力学性能"

图6

不同角度室温拉伸断口扫描形貌"

1 陈凯, 杜东海, 陆辉, 等 . 304L不锈钢在高温高压水中的腐蚀疲劳裂纹扩展行为[J]. 腐蚀与防护, 2018, 39(1): 17-23.
Chen Kai , Du Dong-hai , Lu Hui , et al . Corrosion fatigue crack growth behavior of 304L stainless steel in high temperature and high pressure water[J]. Corrosion & Protection, 2018, 39(1): 17-23.
2 唐望磊, 曹东, 王虎, 等 . 弹性应力下304L不锈钢在3.5% NaCl溶液中的点蚀行为[J]. 材料保护, 2018, 51(10): 16-21.
Tang Wang-lei , Cao Dong , Wang Hu , et al . Pitting corrosion behavior of 304L stainless steel in 3.5% NaCl solution under elastic stress[J]. Material Protection, 2018, 51(10): 16-21.
3 罗开玉, 柴卿锋, 王长雨, 等 . 激光冲击强化对2Cr13不锈钢腐蚀疲劳性能的影响[J/OL]. [2019-02-15]. http:∥www.cnki.com.cn/Article/CJFDTotal-JLGY2018052300U.htm
4 杨永强, 陈杰, 宋长辉, 等 . 金属零件激光选区熔化技术现状及进展[J]. 激光与光电子学进展, 2018, 55(1): 3-15.
Yang Yong-qiang , Chen Jie , Song Chang-hui , et al . Current status and progress on technology of selective laser melting of metal parts[J]. Laser & Optoelectronics Progress, 2018, 55(1): 3-15.
5 Frazier W E . Metal additive manufacturing: a review[J]. Journal of Materials Engineering and Performance, 2014, 23(6): 1917-1928.
6 Gao W , Zhang Y , Ramanujan D , et al . The status, challenges, and future of additive manufacturing in engineering[J]. Computer-Aided Design, 2015, 69: 65-89.
7 杨强, 鲁中良, 黄福享, 等 . 激光增材制造技术的研究现状及发展趋势[J]. 航空制造技术, 2016, 59(12): 26-31.
Yang Qiang , Lu Zhong-liang , Huang Fu-xiang , et al . Research on status and development trend of laser additive manufacturing[J]. Aeronautical Manufacturing Technology, 2016, 59(12): 26-31.
8 Gu D D , Meiners W , Wissenbach K , et al . Laser additive manufacturing of metallic components: materials, processes andmechanisms[J]. International Materials Reviews, 2012, 57(3): 133-164.
9 谭丽斌, 余心宏 . 3D打印技术在金属成形领域的应用和展望[J]. 精密成形工程, 2015, 7(6): 58-64.
Tan Li-bin , Yu Xin-hong . Application and prospect of 3D printing in metal forming[J]. Precision Forming Engineering, 2015, 7(6): 58-64.
10 Herzog D , Seyda V , Wycisk E , et al . Additive manufacturing of metals[J]. Acta Materialia, 2016, 117: 371-392.
11 Huang H S , Liu P , Mokasdar A , et al . Additive manufacturing and its societal impact: a literature review[J] International Journal of Advanced Manufacturing Technology, 2012, 67(5-8): 1191-1203.
12 Suryawanshi J , Prashanth K G , Scudino S , et al . Simultaneous enhancements of strength and toughness in an Al-12Si alloy synthesized using selective laser melting[J]. Acta Materialia, 2016, 115: 285-294.
13 戴晓琴, 陈瀚宁, 雷剑波, 等 . 激光增材制造304不锈钢显微结构特征与性能研究[J]. 热加工工艺, 2017, 46(16): 83-86.
Dai Xiao-qin , Chen Han-ning , Lei Jian-bo , et al . Study on microstructure and properties of 304 stainless steel by laser additive augmentation[J]. Hot Working Technology, 2017, 46(16): 83-86.
14 杨丹, 宁玉恒, 赵宇光, 等 . 工艺参数对304不锈钢表面激光熔覆Ni基合金涂层的组织、耐磨性及耐腐蚀性的影响[J]. 材料导报, 2017, 31(24): 133-140.
Yang Dan , Ning Yu-heng , Zhao Yu-guang , et al . The effect of process parameters on the structure, wear resistance and corrosion resistance of laser cladding Ni-based alloy coating on 304 stainless steel surface[J]. Materials Review, 2017, 31(24): 133-140.
15 白玉超 . 马氏体时效钢激光选区熔化成型机理及其控性研究[D]. 广州: 华南理工大学机械与汽车工程学院, 2018.
Bai Yu-chao . Research on the mechanism and properties controllability of selective laser melting of maraging steel[D]. Guangzhou: College of Mechanical and Automotive Engineering, South China University of Technology, 2018.
16 Debroy T , Wei H L , Zuback J S , et al . Additive manufacturing of metallic components-process, structure and properties[J]. Progress in Materials Science, 2018(92): 112-224.
[1] 李明,王浩然,赵唯坚. 带抗剪键叠合板的力学性能[J]. 吉林大学学报(工学版), 2019, 49(5): 1509-1520.
[2] 姜秋月,杨海峰,檀财旺. 22MnB5超高强钢焊接接头强化性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1806-1810.
[3] 庄蔚敏, 赵文增, 解东旋, 李兵. 超高强钢/铝合金热铆连接接头性能[J]. 吉林大学学报(工学版), 2018, 48(4): 1016-1022.
[4] 刘晓波, 周德坤, 赵宇光. 不同等温热处理条件下半固态挤压Mg2Si/Al复合材料的组织和性能[J]. 吉林大学学报(工学版), 2016, 46(5): 1577-1582.
[5] 李春玲, 樊丁, 王斌, 余淑荣. 5A06铝合金/镀锌钢预置涂粉对接激光熔钎焊组织与性能[J]. 吉林大学学报(工学版), 2016, 46(2): 516-521.
[6] 邓成江,何晓聪,邢保英,王玉奇,曾凯,丁燕芳. 铝与铜异质板材自冲铆搭接接头的力学性能[J]. 吉林大学学报(工学版), 2015, 45(2): 473-480.
[7] 李欣,王刚,陆冠含,谷诤巍,徐虹. 22MnB5热成形钢板钨极氩弧焊接性能[J]. 吉林大学学报(工学版), 2014, 44(3): 708-711.
[8] 张霖, 赵宏伟, 杨倚寒, 马智超, 黄虎, 马志超. 单层石墨烯薄膜材料纳米压痕过程的分子动力学解析[J]. 吉林大学学报(工学版), 2013, 43(06): 1558-1565.
[9] 白志范, 李桂中, 王超, 王良, 张志敏. 高速客车转向架构架焊接接头组织与力学性能[J]. 吉林大学学报(工学版), 2012, 42(增刊1): 207-211.
[10] 谷诤巍, 于思彬, 韩立军, 孟佳, 徐虹. 超高强度钢与低合金钢的激光搭接焊性能[J]. 吉林大学学报(工学版), 2012, 42(02): 349-353.
[11] 白志范, 李桂中, 王超. S355J2W+N钢焊接接头显微组织与力学性能[J]. 吉林大学学报(工学版), 2011, 41(增刊2): 202-204.
[12] 姜日花1,白爽1,戴跃2 ,赵梅生3. 瘢痕疙瘩的生物力学特性[J]. 吉林大学学报(工学版), 2011, 41(6): 1675-1677.
[13] 汪洪峰,左敦稳,王珉,缪宏. 5554铝合金异种焊料焊接的显微组织及力学性能[J]. 吉林大学学报(工学版), 2011, 41(4): 974-977.
[14] 关庆丰,邱冬华,李艳,陈康敏,安春香,龙荷荪. 17-4PH不锈钢时效析出相的形成过程[J]. 吉林大学学报(工学版), 2011, 41(03): 654-658.
[15] 贾超, 纪圣振, 张峰. 青岛海湾大桥混凝土墩的时变可靠度[J]. 吉林大学学报(工学版), 2010, 40(06): 1543-1549.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!