吉林大学学报(工学版) ›› 2020, Vol. 50 ›› Issue (5): 1894-1904.doi: 10.13229/j.cnki.jdxbgxb20190448

• 通信与控制工程 • 上一篇    

基于统计的物联网分布式拒绝服务攻击检测

陈红松(),陈京九   

  1. 北京科技大学 计算机与通信工程学院,北京 100083
  • 收稿日期:2019-05-10 出版日期:2020-09-01 发布日期:2020-09-16
  • 作者简介:陈红松(1977-),男,教授,博士.研究方向:网络空间安全,人工智能与大数据应用.E-mail:chenhs@ustb.edu.cn
  • 基金资助:
    国家社会科学基金项目(18BGJ071)

Statistical based distributed denial of service attack detection research in internet of things

Hong-song CHEN(),Jing-jiu CHEN   

  1. School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, China
  • Received:2019-05-10 Online:2020-09-01 Published:2020-09-16

摘要:

针对物联网大规模分布式拒绝服务攻击检测难题,基于Docker虚拟化容器技术搭建了物联网流量仿真平台,通过模拟Mirai僵尸网络和执行命令产生4种不同的攻击流量。人工执行与物联网实验箱自动产生正常流量。对原始流量进行统计分析生成包级和秒级两种不同等级的物联网流量数据集。提出了分段HURST指数、滑动窗口熵和滑动窗口置信区间3种统计指标和分析方法,并制定了攻击检测规则。实验结果表明:基于滑动窗口均值置信区间的异常流量检测方法可达72.11%的准确率。

关键词: 统计分析, 异常流量检测, 分布式拒绝服务, 攻击模拟, 物联网仿真

Abstract:

To solve the problem of large-scale Distributed Denial of Service (DDoS) attack detection in Internet of Things (IoT) simulation environment, the Docker virtualized container technology is used to construct the IoT traffic simulation platform. First, four different types of attack traffic are generated by simulating Mirai botnet and executing commands, and normal traffic is generated by manual click and IoT experiment box auto execution. Then, statistical analysis is carried out on the original traffic to generate two different levels of datasets: packet-level and second-level. Third, three statistical analysis methods and indicators are proposed, including segmented HURST exponent, sliding-window based entropy and sliding-window based confidence interval. Finally, the DDoS attack traffic detection rules are generated by the training dataset. The experimental results show that the sliding-window based confidence interval abnormal traffic detection method can achieve an accuracy of 72.11%.

Key words: statistical analysis, abnormal traffic detection, distributed denial of service, attack simulation, internet of things simulation

中图分类号: 

  • TP309

图1

物联网仿真环境流量采集平台结构图"

图2

物联网实验箱结构图"

表1

攻击流量模拟的相关参数"

攻击名称攻击流量 生成工具Docker 数量时间/s频次/(次·s-1)

TCP ACK

泛洪攻击

Mirai僵尸网络

模拟软件

201030

TCP SYN

泛洪攻击

Mirai僵尸网络

模拟软件

201030

HTTP GET

泛洪攻击

Mirai僵尸网络

模拟软件

201203

慢速HTTP

头部攻击

SlowHTTPTest

工具模拟

201203

图3

不同等级数据集之间的关系"

表2

物联网仿真环境下秒级数据集描述"

项目训练集样本测试集样本
个数采集 时间/s个数采集 时间/s
慢速HTTP头部攻击325879263707
TCP SYN泛洪攻击12618164185
TCP ACK泛洪攻击6623978262
HTTP GET泛洪攻击215364157375
人工模拟51016163861715
IoT实验箱55113444511006

表3

物联网仿真环境下整体数据集描述"

数据集训练集正常样本数训练集异常样本数测试集正常样本数测试集异常样本数
包级23 136122 23631 428122 958
秒级1 061732837562

图4

基于统计的异常流量检测流程图"

图5

秒级训练集中不同类别流量20维特征HURST值对比"

图6

秒级训练集中不同类别网络流量的5维最重要特征HURST值对比"

图7

秒级测试集中不同类别流量的5维最重要特征HURST值对比"

图8

时间窗口为20时秒级训练集的5维最重要特征HURST值对比"

图9

时间窗口为20时秒级测试集的5维最重要特征HURST值对比"

图10

秒级训练集不同特征的滑动窗口熵对比"

图11

秒级测试集不同特征的滑动窗口熵对比"

图12

滑动窗口置信区间异常流量检测算法在秒级训练集的预测准确率"

图13

滑动窗口置信区间异常流量检测算法在不同窗口大小的预测准确率"

图14

滑动窗口置信区间异常流量检测算法在不同置信水平的预测准确率"

图15

滑动窗口置信区间异常流量检测算法在秒级测试集的预测准确率"

1 Kolias C, Kambourakis G, Stavrou A, et al. DDoS in the IoT: mirai and other botnets[J]. Computer, 2017, 50(7): 80-84.
2 Hilton S. Dyn analysis summary of friday october 21 attack Dyn[EB/OL]. [2016-10-01].
3 Sahi A, Lai D, Li Y, et al. An efficient DDoS TCP flood attack detection and prevention system in a cloud environment[J]. IEEE Access, 2017(5): 6036-6048.
4 Gurulakshmi K, Nesarani A. Analysis of IoT bots against DDOS attack using machine learning algorithm[C]∥2018 2nd International Conference on Trends in Electronics and Informatics(ICOEI), Tirunelveli, 2018: 1052-1057.
5 Doshi R, Apthorpe N, Feamster N. Machine learning DDoS detection for consumer internet of things devices[C]∥2018 IEEE Security and Privacy Workshops(SPW), San Francisco, CA, 2018: 29-35.
6 Özçelik M, Chalabianloo N, Gür G. Software-Defined edge defense against IoT-based DDoS[C]∥2017 IEEE International Conference on Computer and Information Technology(CIT), Helsinki, 2017: 308-313.
7 Mishra A, Dixit A. Resolving threats in IoT: ID spoofing to DDoS[C]∥2018 9th International Conference on Computing, Communication and Networking Technologies(ICCCNT), Bangalore, 2018: 1-7.
8 Ben S N, Biondi F, Bontchev V, et al. Detection of mirai by syntactic and behavioral analysis[C]∥2018 IEEE 29th International Symposium on Software Reliability Engineering(ISSRE), Memphis, TN, USA, 2018: 224-235.
9 Agrawal N, Tapaswi S. Low rate cloud DDoS attack defense method based on power spectral density analysis[J]. Information Processing Letters, 2018, 138: 44-50.
10 Hirakawa T, Ogura K, Bista B B, et al. A defense method against distributed slow HTTP DoS attack[C]∥2016 19th International Conference on Network-Based Information Systems(NBiS), Ostrava, 2016: 152-158.
11 Muraleedharan N, Janet B. Behaviour analysis of HTTP based slow denial of service attack[C]∥2017 International Conference on Wireless Communications, Signal Processing and Networking(WiSPNET), Chennai, 2017: 1851-1856.
12 Ahmed M E, Ullah S, Kim H. Statistical application fingerprinting for DDoS attack mitigation[J]. IEEE Transactions on Information Forensics and Security, 2019, 14(6): 1471-1484.
13 Kolias C, Kambourakis G, Stavrou A, et al. Intrusion detection in 802.11 networks: empirical evaluation of threats and a public dataset[J]. IEEE Communications Surveys & Tutorials, 2016, 18(1): 184-208.
14 Charles E. KDD Cup 1999: computer network intrusion detection[EB/OL]. [1999-09-01].
15 李金明, 王汝传. 基于Hurst参数的DoS/DDoS攻击实时检测技术研究[J]. 计算机工程与应用, 2007, 43(6): 20-23.
Li Jin-ming, Wang Ru-chuan. DoS/DDoS attack detection based on Hurst parameter[J]. Computer Engineering and Applications, 2007, 43(6): 20-23.
16 徐江平. 基于统计分析的分布式流量异常检测应用研究[D]. 成都: 电子科技大学通信与信息工程学院, 2015.
Xu Jiang-ping. Research on distributed traffic anomaly detection based on statistical analysis[D]. Chengdu: School of Communication and Information Engineering, University of Electronic Science and Technology of China, 2015.
[1] 王天皓, 王忠福, 王雨蒙, 杨开宇, 高印寒, 马喜来. 基于混沌多项式展开法的线束串扰统计模型[J]. 吉林大学学报(工学版), 2017, 47(5): 1568-1576.
[2] 李洪萍,裴玉龙,杨中良 .

快速路自由流速度及其影响因素

[J]. 吉林大学学报(工学版), 2007, 37(04): 772-776.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!