吉林大学学报(工学版) ›› 2020, Vol. 50 ›› Issue (2): 526-534.doi: 10.13229/j.cnki.jdxbgxb20190520

• 交通运输工程·土木工程 • 上一篇    

变覆盖半径下城市轨道交通维护保障网络设计模型

孙宝凤(),姜源,郑黎黎(),崔万坤,任欣欣   

  1. 吉林大学 交通学院,长春 130022
  • 收稿日期:2019-05-25 出版日期:2020-03-01 发布日期:2020-03-08
  • 通讯作者: 郑黎黎 E-mail:sunbf@jlu.edu.cn;zlldtq1024@163.com
  • 作者简介:孙宝凤(1970-),女,教授,博士.研究方向:物流系统仿真与供应链管理.E-mail:sunbf@jlu.edu.cn
  • 基金资助:
    国家自然科学基金项目(51308249);吉林省产业技术研究与开发专项项目(2015Y044)

Modified design model of maintenance network for urban rail transit system with variable radius covering

Bao-feng SUN(),Yuan JIANG,Li-li ZHENG(),Wan-kun CUI,Xin-xin REN   

  1. College of Transportation, Jilin University, Changchun 130022, China
  • Received:2019-05-25 Online:2020-03-01 Published:2020-03-08
  • Contact: Li-li ZHENG E-mail:sunbf@jlu.edu.cn;zlldtq1024@163.com

摘要:

采用变覆盖半径的集合覆盖模型构建了城市轨道交通维护保障网络设计新模型。鉴于维修保障点的覆盖和保障规则与选择的算法组合优化进程具有高度相似性,设计了生物地理学优化算法求解模型。算例分析表明:通过直接权衡覆盖半径与维修响应时间的关系适应网络化运营要求,所建模型和算法有效;维修保障能力和覆盖半径变化对于维修及时性、维修单元利用率均有影响。

关键词: 城市交通运输, 网络化维修, 集合覆盖模型, 生物地理学优化算法

Abstract:

A novel Set Covering (SC) model with variable coverage radius was proposed to design maintenance network for urban rail transit system in the context of networked maintenance. Optimization Biogeography-based algorithm was exploited to solve the SC model as its combinatorial optimization programming is highly similar with covering rule and maintenance mechanism. Experimental example analysis showed that the proposed SC model and algorithm are effective to meet with network-wide requirements by a direct tradeoff between the covering radius and maintenance response time. Besides, maintenance capacity and variable coverage radius of each maintenance point affect both the maintenance timeliness and resource utilization of maintenance unit.

Key words: urban transportation, networked maintenance, set covering model, optimization biogeography-based algorithm

中图分类号: 

  • U12,O22

图1

算法逻辑实现过程"

图2

A市城市轨道交通运营网络结构"

表1

基础实验维修保障点及其保障范围"

保障点vj'编号车站vni(n=1,2,3)轨道eik保障单元数量/个
数量/个编号数量/个编号
累计778196
6121,2,3,4,5,6,7,8,26,34,35,66141,2,3,4,5,6,7,8,25,33,34,35,67,6815
12119,10,11,12,13,14,15,16,48,49,50119,10,11,12,13,14,15,48,49,50,5114
211117,18,19,20,21,22,36,37,38,39,401116,17,18,19,20,21,36,37,38,39,40,14
291227,28,29,30,31,32,33,67,68,69,70,711326,27,28,29,30,31,32,69,70,71,72,73,7415
411023,24,25,41,42,43,44,45,46,471022,23,24,41,42,43,44,45,46,4712
531051,52,53,54,72,73,74,75,76,771252,53,54,55,56,75,76,77,78,79,80,8113
601155,56,57,58,59,60,61,62,63,64,651057,58,59,60,61,62,63,64,65,6613

表2

基础实验的维修保障路径平均长度与抵达时间"

保障点

vj'编号

保障车站vni数量/个保障路径eik总长度L/km保障路径eik平均长度Lˉ/km平均抵达时间tˉ/min
累计(平均)77249.303.232.16
61237.903.162.11
121132.502.961.98
211145.604.152.77
291237.503.132.09
411031.303.132.09
531023.502.351.57
601141.003.732.49

图3

维修保障点29的保障范围"

表3

性能实验1维修保障点及其保障范围"

保障点vj'编号车站vni(n=1,2,3)轨道eik保障单元数量/个
数量/个编号数量/个编号
累计778195
5131,2,3,4,5,6,7,8,34,35,36,37,66141,2,3,4,5,6,7,33,34,35,36,37,67,6816
12129,10,11,12,13,14,15,16,48,49,50,51138,9,10,11,12,13,14,15,48,49,50,51,5215
19517,18,19,20,21516,17,18,19,206
291128,29,30,31,32,33,67,68,69,70,711227,28,29,30,31,32,69,70,71,72,73,74,7514
4116

22,23,24,25,26,27,38,39,40,41,42,43,44,

45,46,47

1621,22,23,24,25,26,38,39,40,41,42,43,44,45,46,4720
521052,53,54,55,72,73,74,75,76,771053,54,55,56,76,77,78,79,80,8112
601056,57,58,59,60,61,62,63,64,651057,58,59,60,61,62,63,64,65,6612

表4

不同服务能力约束Qjmax对设计模型解的影响"

Qjmax维修保障点vj'数量保障路径eik总长度L/km保障路径eik平均长度Lˉ/km平均抵达时间tˉ/min维修保障单元实际需求Qjr维修保障单元配置总数量Qj维修保障单元使用率/%
1211255.23.322.2210013275.76
1310255.43.322.229913076.16
148252.63.282.199711286.61
157249.33.242.169610591.43
167251.73.272.189611285.72
177253.43.302.209511979.84
187252.93.292.209512675.40
+inf7251.13.272.189514067.86

表5

性能实验2下变覆盖半径时设计模型的最优解"

/kmR1/R2/R3维修保障点vj'数量保障路径eik长度/km保障路径eik平均长度/km平均保障时间t/min维修保障单元实际需求(Qjr维修保障点服务能力Qjmax维修保障单元设计数量维修保障单元使用率/%
8/5/27255.83.332.22951510590.48
7.5/5/2.57249.33.242.16961510591.43
7/5/37250.13.252.17961512080.00
6/5/48251.63.232.16971515064.67
5/5/511248.93.382.26971516558.79
1 赵昕, 顾保南. 2018年中国城市轨道交通运营线路统计和分析[J]. 城市轨道交通研究, 2019, 22(1): 1-7.
Zhao Xin,Gu Bao-nan. Statistical analysis of urban rail transit lines in 2018 China[J]. Urban Mass Transit, 2019, 22(1): 1-7.
2 韩震, 卢昱, 古平, 等. 基于复杂网络的维修保障力量体系建模方法[J]. 火力与指挥控制, 2014, 39(9): 31-35, 39.
Han Zhen, Lu Yu, Gu Ping, et al. Research on maintenance support force system modeling based on complex networks[J]. Fire Control & Command Control, 2014, 39(9): 31-35, 39.
3 苏莹. 基于Petri网的装备维修保障网络能力评价[D]. 长沙: 国防科学技术大学系统工程学院, 2012.
Su Ying. A petri net-based approach for evaluating the capability of equipmen maintenance support network[D]. Changsha: School of Systems Engineering, National University of Defense Technology, 2012.
4 王文峰, 刘亚杰, 郭波. 战役装备维修保障网络设计问题研究[J]. 兵工学报, 2008, 29(12): 1501-1508.
Wang Wen-feng, Liu Ya-jie, Guo Bo. Research on the armaments repair support network design problem[J]. Acta Armamentarii, 2008, 29(12): 1501-1508.
5 Cui W, Jiang Y, Sun B F, et al. Maintenance network planning of RFID facilities considering the validity of communication nodes[C]∥Proceedings of the 5th International Conference on Transportation Engineering. Dalian:American Society of Civil Engineers (ASCE), 2015: 580-589.
6 Dantrakul S, Likasiri C, Pongvuthithum R. Applied p-median and p-center algorithms for facility location problems[J]. Expert Systems with Applications, 2014, 41(8): 3596-3604.
7 Upchurch C, Kuby M J. Comparing the p-median and flow-refueling models for locating alternative-fuel stations[J]. Journal of Transport Geography, 2010, 18(6): 750-758.
8 Richard C, Charles R. The maximal covering location problem[J]. Papers of the Regional Science Association, 1974, 32(1): 101-118.
9 罗清玉, 田万利, 贾洪飞. 考虑通勤需求的电动汽车充电站选址与定容模型[J]. 吉林大学学报: 工学版, 2019, 49(5): 1471-1477.
Luo Qing-yu, Tian Wan-li, Jia Hong-fei. Location and apacity model of electric vehicle charging station considering commuting demand[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(5): 1471-1477.
10 Afshin S M, Mohsen B, Saeed M, et al. Linear upper-bound unavailability set covering models for locating ambulances: application to Tehran rural roads[J]. European Journal of Operational Research, 2012, 221(1): 263-272.
11 Başar A, Çatay B, Ünlüyurt T. A taxonomy for emergency service station location problem[J]. Optimization Letters, 2012, 6(6): 1147-1160.
12 乔联宝. 覆盖类选址问题分类及研究综述[J]. 物流科技, 2015, 38(3): 59-66.
Qiao Lian-bao. Classification and review on the covering facility location problem[J]. Logistics Sci-Tech, 2015, 38(3): 59-66.
13 Berman O, Drezner Z, Krass D. Generalized coverage: new developments in covering location models[J]. Computers and Operation Research, 2010, 37(10): 1675-1687.
14 Berman O, Drezner Z, Krass D, et al. The variable radius covering problem[J]. European Journal of Operational Research, 2009, 196(2): 516-525.
15 Bashiri M, Fotuhi F. A cost-based set-covering location-allocation problem with unknown covering radius[C]∥IEEE International Conference on Industrial Engineering and Engineering Management, Hong Kong, 2009: 1979-1983.
16 孙宝凤, 高坤, 申琇秀, 等. 基于能力平衡和变覆盖半径的加油站网络扩充选址模型[J]. 吉林大学学报: 工学版, 2018, 48(3): 704-711.
Sun Bao-feng, Gao Kun, Shen Xiu-xiu, et al. Location model of gas station for network expansion based on capacity balance and variable coverage radius[J]. Journal of Jilin University (Engineering and Technology Edition), 2018, 48(3): 704-711.
17 Davaria S, Zarandia M H F, Hemmati A, et al. The variable radius covering problem with fuzzy travel times[C]∥International Conference on Fuzzy Systems, Spain, 2010: 1-6.
18 Simon D. Biogeography-based optimization[J]. IEEE Transactions on Evolutionary Computation, 2008, 12(6): 702-713.
19 王存睿, 王楠楠, 段晓东, 等. 生物地理学优化算法综述[J]. 计算机科学, 2010, 37(7): 34-38.
Wang Cun-rui, Wang Nan-nan, Duan Xiao-dong, et al. Survey of biogeography-based optimization[J] Computer Science, 2010, 37(7): 34-38.
20 周炳海, 彭涛. 基于混合教-学算法的汽车装配线物料供应调度[J]. 浙江大学学报: 工学版, 2018, 52(10): 1854-1863.
Zhou Bing-hai, Peng Tao. Part-supply scheduling of automobile assembly line with hybrid teaching-learning-based optimization algorithm[J]. Journal of Zhejiang University (Engineering Science), 2018, 52(10): 1854-1863.
[1] 孙宝凤, 高坤, 申琇秀, 梁婷. 基于能力平衡和变覆盖半径的加油站网络扩充选址模型[J]. 吉林大学学报(工学版), 2018, 48(3): 704-711.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!