吉林大学学报(工学版) ›› 2020, Vol. 50 ›› Issue (5): 1709-1717.doi: 10.13229/j.cnki.jdxbgxb20190611

• 交通运输工程·土木工程 • 上一篇    

疏水性纳米白炭黑改性沥青及混合料的粘弹特性

王子文1(),郭学东2,郭威2,常孟元2,戴文亭2()   

  1. 1.长吉城际铁路有限责任公司, 长春 130021
    2.吉林大学 交通学院, 长春 130022
  • 收稿日期:2019-06-17 出版日期:2020-09-01 发布日期:2020-09-16
  • 通讯作者: 戴文亭 E-mail:wangziwen7007@163.com;daiwt@jlu.edu.cn
  • 作者简介:王子文(1973-),男,高级工程师.研究方向:道路材料研发,桥梁结构计算.E-mail: wangziwen7007@163.com
  • 基金资助:
    国家自然科学基金项目(51178204)

Viscoelasticity of hydrophobic nano⁃silica modified asphalt and asphalt mixture

Zi-wen WANG1(),Xue-dong GUO2,Wei GUO2,Meng-yuan CHANG2,Wen-ting DAI2()   

  1. 1.Changji Intercity Railway Co. Ltd. , Changchun 130021, China
    2.College of Transportation, Jilin University, Changchun 130022, China
  • Received:2019-06-17 Online:2020-09-01 Published:2020-09-16
  • Contact: Wen-ting DAI E-mail:wangziwen7007@163.com;daiwt@jlu.edu.cn

摘要:

为研究疏水性纳米白炭黑改性沥青及沥青混合料的粘弹特性,选用硅烷偶联剂表面修饰后得到的疏水性纳米白炭黑作为沥青改性剂,对疏水性纳米白炭黑改性沥青及沥青混合料进行了针入度试验、旋转粘度试验、剪切流变试验和静态蠕变试验,并以针入度指数、旋转粘度、复数剪切模量、弹性剪切模量、粘性剪切模量、相位角、车辙因子、应变差以及Burgers粘弹参数为技术指标进行了粘弹性评价。结果表明:加入疏水性纳米白炭黑,可增强沥青混合料的粘弹性能和高温稳定性能,改善沥青的感温性能以及常温状态下的触变性。通过主曲线分析可知,在低频区疏水性纳米白炭黑的掺入可以提高沥青的相位角,增强沥青的弹性性能。通过分析疏水性纳米白炭黑改性沥青的Burgers模型参数,发现疏水性纳米白炭黑的掺入可提高沥青的粘滞系数。由静态蠕变试验结果分析可知,疏水性纳米白炭黑的掺入,可明显降低相同温度下沥青混合料的应变值。此外,疏水性纳米白炭黑改性剂的掺入可增强沥青混合料的弹性部分,增大沥青混合料的粘性流动变形和粘弹性延迟变形。

关键词: 表面修饰, 疏水性纳米白炭黑, 粘弹性, 剪切流变试验, Burgers模型

Abstract:

In order to study the viscoelasticity of the hydrophobic nano-silica modified asphalt and its mixture, the hydrophobic nano-silica obtained by surface modification of silane coupling agent was used to modify the asphalt. Penetration test, rotational viscosity test, shear rheological test and static creep test were carried out on the modified asphalt and modified asphalt mixture. The penetration index, rotational viscosity, complex shear modulus, elastic shear modulus, viscoelastic modulus, phase angle, rutting factor, strain difference and Burgers viscoelastic parameters were evaluated for viscoelasticity. The results show that the incorporation of hydrophobic nano-silica can enhance the viscoelasticity and high-temperature stability of asphalt mixture, and improve the temperature sensing performance of asphalt and the thixotropy under normal temperature. According to the main curve analysis, in the low frequency region, the incorporation of hydrophobic nano-silica can improve the phase angle of the asphalt and enhance the elastic property of the asphalt. By analyzing the Burgers model parameters of hydrophobic nano-silica modified asphalt, it is found that the incorporation of hydrophobic nano-silica can improve the viscosity of asphalt. The results of static creep test show that the incorporation of hydrophobic nano-silica can significantly reduce the strain value of the asphalt mixture at the same temperature. In addition, the incorporation of the hydrophobic nano-silica modifier can enhance the elastic portion of the asphalt mixture, increasing viscous flow deformation and viscoelastic delayed deformation.

Key words: surface modification, hydrophobic nano-silica, viscoelasticity, dynamic shear rheology test, Burgers model

中图分类号: 

  • U416

图1

疏水性纳米白炭黑的接枝机理"

表1

疏水性纳米白炭黑的技术参数"

项目比表面积/(m2·g-1平均粒度/nmPH值SiO2含量/%
试验结果125±20125.0~8.0≥99.8
试验标准130±30≤203.7~6.5≥99.8

图2

纳米白炭黑的电镜扫描图像(X60000)"

图3

疏水性纳米白炭黑的电镜扫描图像(X60000)"

表2

沥青的技术参数"

技术项目试验方法实测值
针入度/(25 °C,0.1 mm)T060466.9
软化点/°CT060646.7
动力粘度/(60 °C,pa·s)T0620190
延度/(10 °C,cm)T0605≥45
蜡含量/%T06151.8
闪点/°CT0611328
密度/(25 °C,g·cm-3T06031.030

表3

细集料的级配及技术参数"

参数粒径/mm
0.0750.150.30.61.18
表观相对密度/(g·cm-32.672.692.702.702.75
表观相对密度/(g·cm-32.612.622.632.652.67
表观相对密度/(g·cm-32.592.602.592.572.55
质量分数/%2.53.04.06.09.5

表4

粗集料的级配及技术参数"

参数粒径/mm
2.364.759.513.216
表观相对密度/(g·cm-32.742.742.782.782.78
表观相对密度/(g·cm-32.682.712.762.772.78
表观相对密度/(g·cm-32.642.682.752.762.77
质量百分率/%15271575

表5

基质沥青和疏水性纳米白炭黑改性沥青的针入度"

沥青15 °C 针入度/mm25 °C 针入度/mm30 °C 针入度/mm
BA17.563.088.1
SCASBA16.255.483.0

表6

基质沥青和疏水性纳米白炭黑改性沥青针入度参数"

沥青AKPIR2
BA0.040 260.749 49-0.043 150.998 666
SCASBA0.042 550.650 35-0.407 670.998 424

图4

基质沥青和疏水性纳米白炭黑改性沥青粘温曲线"

表7

基质沥青和疏水性纳米白炭黑改性沥青粘度曲线回归分析结果"

参数SCASBABA
A620.07247.726
B-0.043-0.025
R20.997 8900.988 377

图5

不同温度下两种沥青的实验结果"

表8

位移因子计算结果"

参数30 °C40 °C50 °C60 °C
αt1010.150.032 258
lgαt10-0.823 9-1.491 36

图6

基质沥青和疏水性纳米白炭黑改性沥青的主曲线"

表9

基于DSR试验两种沥青的Burgers模型参数"

类型E1E2η1η2
BA 30 °C2 766 4551 872 35457 345.2167 688.74
BA 40 °C1 296 750503 0258 364.7518 418.13
BA 50 °C503 299.2136 915.81 405.4145 283.488
BA 60 °C254 767.164 799.75343.002 22 266.984

SCASBA

30 °C

2 087 6961 597 64848 252.0455 364.65

SCASBA

40 °C

1 314 576423 743.27 360.99416 130.09

SCASBA

50 °C

519 572.7138 212.61 344.8555 337.711

SCASBA

60 °C

233 91077 542.2309.6722 316.33

图7

不同温度下两种沥青混合料的静载蠕变时间曲线"

表10

不同荷载作用次数下两种沥青混合料的应变差"

加载次数Δ1Δ2Δ3Δ4
11.65×10-33.36×10-37.34×10-37.98×10-3
101.62×10-32.77×10-35.45×10-36.81×10-3
1008.76×10-41.01×10-41.32×10-31.56×10-3
5005.32×10-45.54×10-46.05×10-46.94×10-4
10004.50×10-44.54×10-44.63×10-44.95×10-4
30003.53×10-43.55×10-43.61×10-43.84×10-4

表11

基于静载蠕变试验两种沥青混合料的Burgers模型参数"

项目E1E2η1η2R
BA-AC(30 °C)36.5114.1627 332.33 632.80.973
SCASBA-AC(30 °C)56.062.7566 977.33 386.60.987
BA-AC(40 °C)19.783.6453 161.01 271.10.982
SCASBA-AC(40 °C)31.835.0346 585.7959.20.991
BA-AC(50 °C)15.744.3329 777.6860.70.975
SCASBA-AC(50 °C)18.715.1203 886.5356.40.991
BA-AC(60 °C)13.328.3225 465.8525.90.979
SCASBA-AC(60 °C)16.710.4163 449.7273.00.994
1 韦大川, 王云鹏, 李世武. 橡胶粉与SBS复合改性沥青路用性能与微观结构[J]. 吉林大学学报: 工学版, 2008, 38(3): 525-529.
Wei Da-chuan, Wang Yun-peng, Li Shi-wu. Physical properties and microstructure of waste rubber powder and SBS complex modified asphalt[J]. Journal of Jilin University(Engineering and Technology Edition), 2008, 38(3): 525-529.
2 樊亮, 张玉贞, 刘延军, 等. 纳米材料与技术在沥青路面中的应用研究进展[J]. 材料导报, 2010, 24(23): 72-75.
Fan Liang, Zhang Yu-zhen, Liu Yan-jun, et al. Recent application progress of nanometer material & technology in asphalt pavement[J]. Materials Review, 2010, 24(23): 72-75.
3 夏纬通. 白炭黑在灯泡工业中的应用[J]. 江苏化工, 1995(1): 7-11.
Xia Wei-tong. Application of silica in light bulb industry[J]. Jiangsu Chemical Industry, 1995(1): 7-11.
4 刘建国, 季桂娟, 郝磊, 等. 油页岩灰渣提取白炭黑的方法[J]. 吉林大学学报: 地球科学版, 2011, 41(4): 1192-1196.
Liu Jian-guo, Ji Gui-juan, Hao Lei, et al. Method for extracting white carbon black by oil shale ash[J]. Journal of Jilin University(Earth Science Edition), 2011, 41(4): 1192-1196.
5 张兴友, 谭忆秋, 王哲人. 白炭黑改性沥青及其混合料的路用性能研究[J]. 公路交通科技, 2005, 22(7): 23-40.
Zhang Xing-you, Tan Yi-qiu, Wang Zhe-ren. Study on performance of silica modified asphalt and its mixture[J]. Journal of Highway and Transportation Research and Development, 2005, 22(7): 23-40.
6 林桂. 纳米粉体在橡胶基质中的聚集和分散研究[D]. 北京: 北京化工大学材料科学与工程学院, 2004.
Lin Gui. Study on aggregation and dispersion of nano powders in rubber matrix[D]. Beijing: School of Materials Science and Engineering, Beijing University of Chemical Technology, 2004.
7 于欣伟, 陈姚. 白炭黑的表面改性技术[J]. 广州大学学报: 自然科学版, 2002, 1(6): 12-16.
Yu Xin-wei, Chen Yao. Surface modification technology of silica[J]. Journal of Guangzhou University(Natural Science Edition), 2002, 1(6): 12-16.
8 Guo W, Guo X D, Sun M Z, et al. Evaluation of the durability and the property of an asphalt concrete with nano hydrophobic silane silica in spring-thawing Season[J]. Applied Science, 2018, 8(9): 1475-1493.
9 赵延庆, 谭忆秋, 王国忠, 等. 粘弹性对沥青路面疲劳开裂的影响[J]. 吉林大学学报: 工学版, 2010, 40(3): 683-687.
Zhao Yan-qing, Tan Yi-qiu, Wang Guo-zhong, et al. Effect of viscoelasticity on fatigue cracking of asphalt pavement[J]. Journal of Jilin University(Engineering and Technology Edition), 2010, 40(3): 683-687.
10 Gao J F, Wang H N, You Z P, et al. Rheological behavior and sensitivity of wood-derived bio-oil modified asphalt binders[J]. Applied Science, 2018, 8(6): 919-936.
11 Stefan H. Comments on a priori and a posteriori evaluations of sub-grid scale models for the Burgers’ equation[J]. Computers & Fluids, 2016, 138: 35-37.
12 Yuan X F, Ma S, Jiang S H. Form-finding of tensegrity structures based on the Levenberg-Marquardt method[J]. Computers & Fluids, 2017, 192: 171-180.
[1] 于海业,乔建磊,肖英奎,王淑杰,张艳萍,. 气雾栽培马铃薯块茎的基本物理特性[J]. 吉林大学学报(工学版), 2011, 41(01): 282-0287.
[2] 赵长福, 高中礼, 马中胜, 马洪顺. 股骨上端松质骨压缩粘弹性实验研究[J]. 吉林大学学报(工学版), 2002, (2): 87-90.
[3] 李洪, 王玉臣, 马洪顺. 腹主动脉粘弹性实验研究[J]. 吉林大学学报(工学版), 2001, (4): 38-41.
[4] 董心, 贺家宁, 罗民, 马洪顺. C3-C7段颈椎粘弹性实验研究[J]. 吉林大学学报(工学版), 2001, (2): 35-39.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!