吉林大学学报(工学版) ›› 2021, Vol. 51 ›› Issue (1): 233-244.doi: 10.13229/j.cnki.jdxbgxb20190937

• 交通运输工程·土木工程 • 上一篇    

比色法检测受火后混凝土损伤程度

魏亚1(),孔维康2,万成1,左勇志3,鲁巧稚3   

  1. 1.清华大学 土木工程系,北京 100084
    2.长安大学 陕西省公路桥梁与隧道重点实验室,西安 710064
    3.北京市建筑研究院,北京 100039
  • 收稿日期:2019-07-26 出版日期:2021-01-01 发布日期:2021-01-20
  • 作者简介:魏亚(1976-), 女, 副教授, 博士. 研究方向: 耐久性路面材料与结构. E-mail: yawei@tsinghua.edu.cn
  • 基金资助:
    国家自然科学基金项目(51578316)

Colorimetry method in assessing fire-damaged concrete

Ya WEI1(),Wei-kang KONG2,Cheng WAN1,Yong-zhi ZUO3,Qiao-zhi LU3   

  1. 1.Department of Civil Engineering,Tsinghua University,Beijing 100084,China
    2.Shanxi Provincial Major Laboratory for Highway Bridge and Tunnel,Chang′an University,Xi′an 710064,China
    3.Beijing Building Construction Research Institute,Beijing 100039,China
  • Received:2019-07-26 Online:2021-01-01 Published:2021-01-20

摘要:

传统的火灾灾后混凝土的损伤程度评估方法需要大量的实验工作,而其他一些新技术成本较高,适用性仍需进一步研究。针对这一问题,提出了一种基于光学分析的比色法,通过色度图中颜色坐标的移动来评价混凝土的热损伤。对C30混凝土立方体进行了火灾破坏实验,然后在日光与荧光、手动与自动白平衡条件下拍摄混凝土表面照片。建立了混凝土颜色坐标与其所受最高温度之间的关系的色度图,可以根据混凝土颜色确定混凝土所经历的最高温度,并建议在日光和手动白平衡条件下拍摄照片。研究结果将有助于提高混凝土火灾损伤评估的技术水平。

关键词: 混凝土颜色, 色度图, 比色法, 受火损伤, RGB值

Abstract:

The traditional methods for assessing the fire damaged concrete structures require large amount of experimental efforts, and some other new technologies are expensive and their applicability still needs further investigation. In view of this, a colorimetric method based on the optical analysis is proposed to evaluate the heating damage of the concrete in terms of the translation of the color coordinates in the chromaticity diagram. Fire damage experiment was first conducted on the C30 concrete cubes. And then photos were taken under the conditions of daylight vs. fluorescent and manual white balance vs. auto white balance. The chromaticity diagram is constructed to represent the relationship between the coordinates of the concrete colors and the maximum temperature that the concrete was subject to. The maximum temperature that the concrete experienced can thus be determined based on concrete color. The conditions under the daylight and the manual white balance are recommended to take photos for constructing chromaticity diagram. The results of this study will advance the technology for assessing fire-damaged concrete.

Key words: concrete color, chromaticity diagram, colorimetry method, fire-damage, RBG value

中图分类号: 

  • TB321

图1

RGB颜色空间与XYZ颜色空间组合系数"

图2

XYZ空间颜色组合系数"

图3

C30混凝土在日光-自动白平衡条件下,受火1 h的照片"

图4

C30混凝土在日光-手动白平衡条件下,受火1 h的照片"

图5

在日光-自动白平衡条件下C30混凝土的色度图"

图6

在日光-手动白平衡条件下C30混凝土的色度图和受火温度在 200~400 ℃和400~800 ℃时C30混凝土的局部色度图和趋势线"

图7

在荧光-手动白平衡条件下C30混凝土的色度图"

图8

在日光-手动白平衡条件下C30混凝土受火1 h与3 h的色度图和受火温度在200~800 ℃时C30混凝土的局部色度图和趋势线"

表1

在日光和人工白平衡条件下色度图中混凝土颜色坐标的线性分布和线性方程为y=ax+b"

水泥型号加热时间温度/℃abR2x范围来源
C301 h2000.92580.06070.9700(0.323, 0.335)图6
4000.89240.06870.9747(0.324, 0.334)
6000.90020.06580.9914(0.312, 0.322)
8000.89510.06740.9659(0.308, 0.311)
3 h2000.93480.05880.9674(0.318, 0.334)图8
4000.88750.07080.9912(0.321, 0.332)
6000.88850.06940.9715(0.311, 0.318)
8000.89080.06880.9582(0.308, 0.311)
1 Vejmelková E, Koňáková D, Scheinherrová L, et al. High temperature durability of fiber reinforced high alumina cement composites[J]. Construction and Building Materials, 2018, 162: 881-891.
2 Zhang Q, Ye G. Dehydration kinetics of Portland cement paste at high temperature[J]. Journal of Thermal Analysis and Calorimetry, 2012, 110(1): 153-158.
3 Sabeur H, Platret G, Vincent J. Composition and microstructural changes in an aged cement pastes upon two heating-cooling regimes, as studied by thermal analysis and X-ray diffraction[J]. Journal of Thermal Analysis and Calorimetry, 2016, 126: 1023-1043.
4 Collier N C. Transition and decomposition temperatures of cement phase―a collection of thermal analysis data points[J]. Ceramics-Silikáty, 2016, 60(4): 338­343.
5 Schneider U. CIB W14 Report, reparability of fire damaged structures[J]. Fire Safety Journal, 1990, 16: 251-336.
6 Kim K Y, Yun T S, Park P K. Evaluation of pore structures and cracking in cement paste exposed to elevated temperatures by X-ray computed tomography[J]. Cement and Concrete Research, 2013, 50: 34-40.
7 Li Z H, Wong L N Y, Teh C I. Low cost colorimetry for assessment of fire damage in rock[J]. Engineering Geology, 2017, 228, 50-60.
8 陈明阳, 侯晓萌, 郑文忠, 等. 混凝土高温爆裂临界温度和防爆裂纤维掺量研究综述与分析[J]. 建筑结构学报, 2017, 38(1): 161-170.
Chen Ming-yang, Hou Xiao-meng, Zheng Wen-zhong, et al. Review and analysis on spalling critical temperature of concrete and fibers dosage to prevent spalling at elevated temperatures[J]. Journal of Building Structures, 2017, 38(1): 161-170.
9 郑文忠, 侯晓萌, 王英. 混凝土及预应力混凝土结构抗火研究现状与展望[J]. 哈尔滨工业大学学报, 2016, 48(12): 1-18.
Zheng Wen-zhong, Hou Xiao-meng, Wang Ying. Progress and prospect of fire resistance of reinforced concrete and prestressed concrete structures[J]. Journal of Harbin Institute of Technology, 2016, 48(12): 1-18.
10 Zheng W Z, Hou X M, Shi D S, et al. Experimental study on concrete spalling in prestressed slabs subjected to fire[J]. Fire Safety Journal, 2010, 45(5): 283-297.
11 Osumi A, Enomoto M, Ito Y. Basic study of an estimation method for fire damage within concrete sample using high-intensity ultrasonic waves and optical equipment[J]. Japanese Journal of Applied Physics, 2014, 53(7S): 07KC16.
12 Yang Y. Evaluating temperature distribution of the sections of fire damaged concrete elements by ultrasonic pulse method[J]. Journal of Southwest Jiaotong University, 1993.
13 Shin S W, Kim S Y, Kim J S. Applicability of impact-echo method for assessment of residual strength of fire-damaged concrete[J]. Journal of Metals Materials and Minerals, 2013, 23(1): 105-112.
14 Du H X, Zhang X, Han J H. Testing and evaluating damage of concrete exposed to fire by infrared thermal image[J]. Journal of Tongji University, 2002(9);1078-1082.
15 Felicetti R. The drilling resistance test for the assessment of fire damaged concrete[J]. Cement and Concrete Composites, 2006, 28(4): 321-329.
16 Felicetti R. Digital camera colorimetry for the assessment of fire damaged concrete[C]∥ Proceedings of the Workshop on Fire Design of Concrete Structures: What now?What next?, Milan, Italy,2004:211-220.
17 Colombo M, Felicetti R. New NDT techniques for the assessment of fire-damaged concrete structures[J]. Fire Safety Journal, 2007, 42(6/7): 461-472.
18 Hager I. Colour change in heated concrete[J]. Fire Technology, 2014, 50(4): 945-958.
19 Ashby M F, Ferreira P J, Schodek D L. Nanomaterials, Nanotechnologies and Design: An Introduction for Engineers and Architects[M]. London:Butterworth-Heinemann, 2009.
20 Ashby M F, Shercliff H, Cebon D. Materials: Engineering, Science, Processing and Design(Third ed)[M]. London:Butterworth-Heinemann, 2013.
21 Bessey G E. Investigations on building fires, part2:the visible changes in concrete or mortar exposed to high temperatures[M]//National Building Studies Technical Paper 4, London: HMSO Publishing, 1950: 6-18.
22 Ingham J P. Application of petrographic examination techniques to the assessment of fire-damaged concrete and masonry structures[J]. Materials Characterization, 2009, 60(7): 700-709.
23 Carré H, Hager I, Perlot C. Contribution to the development of colorimetry as a method for the assessment of fire-damaged concrete[J]. European Journal of Environmental and Civil Engineering, 2014, 18(10): 1130-1144.
24 Oestmo S. Digital imaging technology and experimental archeology: a methodological framework for the identification and interpretation of fire modified rock(FMR)[J]. Journal of Archaeological Science, 2013, 40(12): 4429-4443.
25 Felicetti R. Assessment methods of fire damages in concrete tunnel linings[J]. Fire Technology, 2013, 49(2): 509-529.
26 Gómez-Robledo L, López-Ruiz N, Melgosa M, et al. Using the mobile phone as Munsell soil-colour sensor: an experiment under controlled illumination conditions[J]. Computers and Electronics in Agriculture, 2013, 99: 200-208.
27 Annarel E, Taerwe L. Methods to quantify the colour development of concrete exposed to fire[J]. Construction and Building Materials, 2011, 25(10): 3989-3997.
28 Annarel E, Taerwe L. Revealing the temperature history in concrete after fire exposure by microscopic analysis[J]. Cement and Concrete Research, 2009, 39(12): 1239-1249.
29 Short N R, Purkiss J A, Guise S E. Assessment of fire damaged concrete using colour image analysis[J]. Construction and Building Materials, 2001, 15(1): 9-15.
30 Short N R, Purkiss J A, Guise S E. Assessment of fire-damaged concrete using crack density measurements[J]. Structural Concrete, 2002, 3(3): 137-143.
31 Cowan W B. An inexpensive scheme for calibration of a colour monitor in terms of CIE standard coordinates[J]. ACM SIGGRAPH Computer Graphics, 1983, 17(3): 315-321.
32 公安部消防局. 2018中国消防年鉴[M]. 云南: 云南人民出版社, 2018.
33 Midgley H G. The use of thermal analysis methods in assessing the quality of high alumina cement concrete[J]. Journal of Thermal Analysis, 1978, 13(3): 515-524.
34 Raina S J, Vishwanathan V N, Ghosh S N. Instrumental techniques for investigation of damaged concrete[J]. Indian Concrete Journal, 1978, 52(5/6):147-149.
[1] 张培萍,王丽丹,张立功,罗劲松,范翊 . Nd/Si共掺钇铝石榴石粉体的制备及其性能表征[J]. 吉林大学学报(工学版), 2009, 39(02): 354-0357.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!