吉林大学学报(工学版) ›› 2021, Vol. 51 ›› Issue (2): 524-530.doi: 10.13229/j.cnki.jdxbgxb20191044

• 交通运输工程·土木工程 • 上一篇    

复杂路网的自适应D⁃S证据理论地图匹配算法

滕志军1,2(),张宇2,李昊天2,孙铭阳3   

  1. 1.现代电力系统仿真控制与绿色电能新技术教育部重点实验室(东北电力大学),吉林省 吉林市 132012
    2.东北电力大学 电气工程学院,吉林省 吉林市 132012
    3.东北电力大学 自动化工程学院,吉林省 吉林市 132012
  • 收稿日期:2019-11-13 出版日期:2021-03-01 发布日期:2021-02-09
  • 作者简介:滕志军(1973-),男,教授,博士.研究方向:无线通信技术.E-mail:tengzhijun@163.com
  • 基金资助:
    国家自然科学基金青年科学基金项目(61501107);吉林省教育厅“十三五”科学研究规划项目(JJKH20180439KJ)

Adaptive D⁃S evidence theory map matching algorithm of complex road network

Zhi-jun TENG1,2(),Yu ZHANG2,Hao-tian LI2,Ming-yang SUN3   

  1. 1.Key Laboratory of Modern Power System Simulation and Control & Renewable Energy Technology,Ministry of Education (Northeast Electric Power University),Jilin 132012,China
    2.School of Electrical Engineering,Northeast Electric Power University,Jilin 132012,China
    3.School of Automation Engineering,Northeast Electric Power University,Jilin 132012,China
  • Received:2019-11-13 Online:2021-03-01 Published:2021-02-09

摘要:

针对传统D-S证据理论地图匹配算法在面对城市密集路网时匹配点易出现波动、准确率下降等问题,提出一种改进的基于D-S证据理论的动态匹配算法,完善了传统D-S证据理论中的候选路段概率公式,可针对不同道路类型自适应调整其权重参数。仿真实验表明:改进后算法的定位点匹配准确率较其他算法提高2%左右,单点匹配时间可减少0.5 ms左右,能高效快捷实现复杂城市路网的定位点精准匹配。

关键词: 公路运输, 城市路网, D-S证据理论, 地图匹配, 全球定位系统

Abstract:

Aiming at the problems of fluctuations and low accuracy rate of traditional D-S evidence theory map matching algorithm in dealing with the urban dense road network, this paper proposes an improved dynamic matching algorithm based on D-S evidence theory. Using this algorithm, the candidate segment probability formula in the traditional D-S evidence theory is improved, and its weight parameters are adaptively adjusted for different road types. Simulation experiments show that the matching accuracy and matching time of the proposed algorithm are improved. The matching accuracy can be improved by about 2% compared with other algorithms, and the single-point matching time can be reduced by about 0.5 ms, which can efficiently and quickly realize the accurate matching of the positioning points of complex urban road networks.

Key words: highway transport, urban road network, D-S evidence theory, map matching, global position system

中图分类号: 

  • P208

图1

最短距离计算"

图2

道路方向与车辆方向多夹角示意图"

图3

改进的D-S证据理论地图匹配算法流程"

图4

城市路网平行路段权重参数分析"

图5

城市路网交叉路口路段权重参数分析"

图6

城市路网立交桥路段权重参数分析"

图7

不同算法匹配准确率"

图8

各算法单点匹配时间"

1 孙增友, 杨东娜. 基于整体公平的D2D无线资源分配算法[J]. 东北电力大学学报, 2019, 39(1): 81-87.
Sun Zeng-you, Yang Dong-na. D2D wireless resource allocation algorithm based on overall equity [J]. Journal of Northeast Electric Power University, 2019, 39(1): 81-87.
2 林鹏飞, 翁剑成, 付宇, 等. 基于刷卡数据的轨道交通加权网络结构特征[J]. 吉林大学学报: 工学版, 2020, 50(3): 956-962.
Lin Peng-fei,Weng Jian-cheng,Fu Yu,et al. The structural characteristics of the weighted network of rail transit based on credit card data[J]. Journal of Jilin University (Engineering and Technology Edition),2020, 50(3): 956-962.
3 Hsueh Y L, Chen H C. Map matching for low-sampling-rate GPS trajectories by exploring real-time moving directions[J]. Information Sciences, 2018, 34(1): 433-434.
4 叶波. 基于负载均衡度的云计算任务调度算法[J]. 东北电力大学学报, 2019, 39(1): 88-95.
Ye Bo. Cloud computing task scheduling algorithm based on load balancing[J]. Journal of Northeast Electric Power University, 2019, 39(1): 88-95.
5 孙丽娜, 董劲男, 郑啸天, 等. 一种基于浮动车移动轨迹与电子地图融合的道路匹配算法[J]. 吉林大学学报: 理学版, 2015, 53(4): 710-714.
Sun Li-na, Dong Jin-nan, Zheng Xiao-tian, et al. A road matching algorithm based on the fusion of floating vehicle moving track and electronic map[J]. Journal of Jilin University (Science Edition), 2015, 53(4): 710-714.
6 刘旻, 李梅, 徐晓宇, 等. 一种基于HMM模型改进的地图匹配算法[J]. 北京大学学报: 自然科学版, 2018, 54(6): 1235-1241.
Liu Wei, Li Mei, Xu Xiao-yu, et al. An improved map matching algorithm based on HMM model[J]. Journal of Peking University (Natural Science Edition), 2018, 54(6): 1235-1241.
7 吴刚, 邱煜晶, 王国仁. 基于隐马尔可夫模型和遗传算法的地图匹配算法[J]. 东北大学学报: 自然科学版, 2017, 38(4): 472-475.
Wu Gang, Qiu Yu-jing, Wang Guo-ren. Map matching algorithm based on hidden Markov model and genetic algorithm[J]. Journal of Northeastern University (Natural Science Edition), 2017, 38(4): 472-475.
8 李珂, 杨杨, 邱雪松. 城市汽车导航中一种改进的D-S证据理论地图匹配算法[J]. 测绘学报, 2014, 43(2): 208-213, 220.
Li Ke, Yang Yang, Qiu Xue-song. An improved D-S evidence theory map matching algorithm in urban car navigation[J]. Journal of Surveying and Mapping, 2014, 43(2): 208-213, 220.
9 肖维丽, 岳春生, 奚玲. 基于高程的改进D-S证据理论地图匹配算法[J]. 计算机应用与软件, 2015, 32(7): 262-265.
Xiao Wei-li, Yue Chun-sheng, Yan Ling. Improved D-S evidence theory map matching algorithm based on elevation[J]. Computer Applications and Software, 2015, 32(7): 262-265.
10 Tang J J, Zhang S, Zou Y J, et al. An adaptive map-matching algorithm based on hierarchical fuzzy system from vehicular GPS data[J]. PloS One, 2017, 12(12): 1-12.
11 滕志军, 曲兆强, 侯学艳, 等. 基于曲线拟合与拓扑结构的地图匹配算法[J]. 计算机工程, 2018, 44(8): 291-295.
Teng Zhi-jun, Qu Zhao-qiang, Hou Xue-yan, et al. Map matching algorithm based on curve fitting and topology[J]. Computer Engineering, 2018, 44(8): 291-295.
12 李磊磊, 陈家斌, 杨黎明, 等. 基于道路信息的智能地图匹配算法[J]. 中国惯性技术学报, 2016, 24(2): 170-174.
Li Lei-lei, Chen Jia-bin, Yang Li-ming, et al. Intelligent map matching algorithm based on road information[J]. Chinese Journal of Inertial Technology, 2016, 24(2): 170-174.
13 Ling Y, Dan L, Song H. A map-matching algorithm with low-frequency floating car data based on matching path[J]. EURASIP Journal on Wireless Communications and Networking, 2018(1): 146-152.
14 Carola B, Jana R, Pablo A M, et al. An instance-specific parameter tuning approach using fuzzy logic for a post-processing topological map-matching algorithm[J]. IEEE Intelligent Transportation Systems Magazine, 2018, 14(2): 136-141.
15 朱递, 刘瑜. 一种路网拓扑约束下的增量型地图匹配算法[J]. 武汉大学学报: 信息科学版, 2017, 42(1): 77-83.
Zhu Di, Liu Yu. An incremental map matching algorithm under road network topology constraints[J]. Journal of Wuhan University (Information Science Edition), 2017, 42(1): 77-83.
16 贾洪飞, 郭明雪, 罗清玉, 等. GPS数据下的城市路网关键路段识别[J]. 吉林大学学报: 工学版, 2020, 50(4): 1338-1343.
Jia Hong-fei, Guo Ming-xue, Luo Qing-yu, et al. Identification of key sections of urban road Network based on GPS data[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(4): 1338-1343.
17 孙永荣, 黄斌, 王丽娜, 等. 抗尺度变换的矢量地图匹配导航方法[J]. 中国惯性技术学报, 2013, 21(1): 89-92, 111.
Sun Yong-rong, Huang Bin, Wang Li-na, et al. Vector map matching navigation method against scale transformation[J]. Journal of Chinese Inertial Technology, 2013, 21(1): 89-92, 111.
[1] 张云龙,郭阳阳,王静,梁东. 钢-混凝土组合梁的固有频率及其振型[J]. 吉林大学学报(工学版), 2020, 50(2): 581-588.
[2] 栾磊, 赵晓晖, 徐勇军. 面向区域的认知无线电系统的频谱感知模型[J]. 吉林大学学报(工学版), 2016, 46(4): 1304-1312.
[3] 于生宝, 苏发, 何建龙, 郑建波. 多功能电磁法仪器同步系统的设计与实现[J]. 吉林大学学报(工学版), 2016, 46(1): 146-152.
[4] 杨庆芳, 梅朵, 韩振波, 张彪. 基于云计算的蚁群算法求解城市路网最短路径[J]. 吉林大学学报(工学版), 2013, 43(05): 1210-1214.
[5] 王国林, 傅乃霁, 张建, 裴紫嵘. 基于K-R动力学模型的子午线轮胎硫化过程仿真[J]. 吉林大学学报(工学版), 2013, 43(03): 659-664.
[6] 王晶, 张成春, 张春艳, 任露泉. 客车侧围格栅对发动机舱内热环境的影响 [J]. , 2012, (03): 563-568.
[7] 王占中, 任园园. 基于协同理论的公路运输与国民经济适应性[J]. 吉林大学学报(工学版), 2011, 41(增刊1): 101-105.
[8] 曹红玉,孙汉旭,贾庆轩,叶平,高欣. 基于改进的D-S证据理论的栅格地图构建[J]. 吉林大学学报(工学版), 2011, 41(4): 1126-1130.
[9] 袁月明1,关伟1,邱巍2. 基于切换定位技术的城市近郊快速路地图匹配算法[J]. 吉林大学学报(工学版), 2011, 41(05): 1240-1245.
[10] 孟松鹤, 高慧婷, 孙莉安, 史洪军. 硅灰-矿渣对聚丙烯纤维混凝土性能的影响[J]. 吉林大学学报(工学版), 2010, 40(增刊): 214-0217.
[11] 王京, 王殿海, 曲昭伟. 适应长春-吉林高速铁路建设的公路诱增客流量预测方法[J]. 吉林大学学报(工学版), 2010, 40(06): 1518-1522.
[12] 于德新,高学英,杨兆升. 基于GPS数据及车辆运行特性分析的单车路段行程时间估计[J]. 吉林大学学报(工学版), 2010, 40(04): 965-0970.
[13] 姜桂艳,常安德,吴超腾. 基于GPS浮动车的交通信息采集方法[J]. 吉林大学学报(工学版), 2010, 40(04): 971-0975.
[14] 赵淑芝,朱永刚,赵贝. 基于环保约束的城市小汽车容量预测[J]. 吉林大学学报(工学版), 2009, 39(增刊2): 191-0193.
[15] 孙晓燕,汪秉宏. 应用三种信息反馈策略研究含瓶颈的双通道模型[J]. 吉林大学学报(工学版), 2009, 39(增刊2): 76-0079.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!