吉林大学学报(工学版) ›› 2021, Vol. 51 ›› Issue (1): 278-284.doi: 10.13229/j.cnki.jdxbgxb20200068
• 计算机科学与技术 • 上一篇
Xiao-hui WEI1,2(),Bing-yi SUN1,2,Jia-xu CUI1,2
摘要:
针对在基于事件的社交网络中,用户和其参加过的活动天然构成异质网络这一特点,提出了一个端到端的推荐算法,旨在使用异质网络的高阶连接性和非线性匹配关系,提高活动的推荐命中率。首先,通过图神经网络提取异质图的高阶连接信息对每个节点的影响,更新节点的嵌入式表示;然后,将用户-活动的嵌入式表示输入到多层感知机中,得到基于当前嵌入式表示的匹配概率,反向传播更新模型参数;重复此过程,获得最终的匹配概率。实验结果表明:本文算法训练稳定;相较于已有方法,命中率提高10%以上,归一化折损累计增益提高约10%;相较于不考虑异质图的高阶连接性的情况,命中率和归一化折损累计增益均有提高。
中图分类号:
1 | Liu X, He Q, Tian Y, et al. Event-based social networks: linking the online and offline social worlds[C]∥Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Beijing, China, 2012: 1032-1040. |
2 | Qiao Z, Zhang P, Cao Y, et al. Combining heterogenous social and geographical information for event recommendation[C]∥Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence, Quebec, Canada, 2014: 145-151. |
3 | Macedo A Q, Marinho L B, Santos R L T. Context-aware event recommendation in event-based social networks[C]∥Proceedings of the 9th ACM Conference on Recommender Systems, Vienna, Austria, 2015: 123-130. |
4 | Pham T, Li X, Cong G, et al. A general graph-based model for recommendation in event-based social networks[C]∥IEEE 31st International Conference on Data Engineering, Seoul, South Korea, 2015: 567-578. |
5 | Wu X, Dong Y, Shi B, et al. Who will attend this event together? event attendance prediction via deep LSTM networks[C]∥ Proceedings of the 2018 SIAM International Conference on Data Mining, San Diego, CA, USA, 2018: 180-188. |
6 | 董立岩, 王越群, 贺嘉楠, 等. 基于时间衰减的协同过滤推荐算法[J]. 吉林大学学报:工学版, 2017, 47(4): 1268-1272. |
Dong Li-yan, Wang Yue-qun, He Jia-nan, et al. Collaborative filtering recommendation algorithm based on time decay[J]. Journal of Jilin University (Engineering and Technology Edition), 2017, 47(4): 1268-1272. | |
7 | Hamilton W L, Ying R, Leskovec J. Representation learning on graphs: methods and applications[J]. arXiv:1709.05584, 2017: 1-24. |
8 | Rendle S, Freudenthaler C, Gantner Z, et al. BPR: bayesian personalized ranking from implicit feedback[C]∥ Proceedings of the twenty-fifth Conference on Uncertainty in Artificial Intelligence, Montreal, QC, Canada, 2009: 452-461. |
9 | Wang H, Terrovitis M, Mamoulis N. Location recommendation in location-based social networks using user check-in data[C]∥Proceedings of the 21st ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, Orlando, Florida, USA, 2013: 364-373. |
10 | Jiang X, Sun X, Zhuge H. Towards an effective and unbiased ranking of scientific literature through mutual reinforcement[C]∥Proceedings of the 21st ACM International Conference on Information and Knowledge Management, Maui, HI, USA, 2012: 714-723. |
11 | Thomas N K, Max W. Semi-Supervised classification with graph convolutional networks[C]∥The 5th International Conference on Learning Representations, Toulon, France, 2017. |
12 | Hamilton W, Ying R, Leskovec J. Inductive representation learning on large graphs[C]∥Advances in Neural Information Processing Systems, Long Beach, CA, USA, 2017: 1024-1034. |
13 | Berg R V D, Kipf T, Welling M. Graph convolutional matrix completion[C]∥Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, London, UK, 2018. |
14 | Wang X, He X, Wang M, et al. Neural graph collaborative filtering[C]∥Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, Paris, France, 2019: 165-174. |
15 | He X, Liao L, Zhang H, et al. Neural collaborative filtering[C]∥Proceedings of the 26th International Conference on World Wide Web, Perth, Australia, 2017: 173-182. |
16 | Kingma D, Ba J. Adam: a method for stochastic optimization[C]∥The 3rd International Conference for Learning Representations, San Diego, USA, 2015. |
17 | Bayer I, He X, Kanagal B, et al. A generic coordinate descent framework for learning from implicit feedback[C]∥Proceedings of the 26th International Conference on World Wide Web, Perth, Australia, 2017: 1341-1350. |
[1] | 李军, 李雄飞, 董元方, 赵海英. 一种新的分类器性能评估方法[J]. 吉林大学学报(工学版), 2012, 42(02): 463-468. |
|