吉林大学学报(工学版) ›› 2021, Vol. 51 ›› Issue (3): 840-846.doi: 10.13229/j.cnki.jdxbgxb20200109

• 材料科学与工程 • 上一篇    下一篇

基于剩余强度的高速动车侧窗粘接强度校核方法

范以撒1(),那景新2,上官林建1()   

  1. 1.华北水利水电大学 机械学院,郑州 450045
    2.吉林大学 汽车仿真与控制国家重点实验室,长春 130022
  • 收稿日期:2020-03-04 出版日期:2021-05-01 发布日期:2021-05-07
  • 通讯作者: 上官林建 E-mail:fanyisa123@163.com;sgljbh@163.com
  • 作者简介:范以撒(1986-),男,讲师,博士. 研究方向:车辆轻量化结构设计及理论. E-mail:fanyisa123@163.com
  • 基金资助:
    国家自然科学基金项目(51075187);河南省科技攻关项目(202102210044)

Method for checking bonding strength of high⁃speed EMU side window based on residual strength

Yi-sa FAN1(),Jing-xin NA2,Lin-jian SHANGGUAN1()   

  1. 1.School of Mechanical Engineering,North China University of Water Resources and Electric Power,Zhengzhou 450045,China
    2.State Key Laboratory of Automotive Simulation and Control,Jilin University,Changchun 130022,China
  • Received:2020-03-04 Online:2021-05-01 Published:2021-05-07
  • Contact: Lin-jian SHANGGUAN E-mail:fanyisa123@163.com;sgljbh@163.com

摘要:

从工程应用角度出发,提出了一种基于剩余强度的高速动车组侧窗粘接结构强度校核方法,该方法采用人工加速老化试验与仿真分析相结合的方式,完成对粘接胶层的强度校核。采用执行程序完成校核结果的显示化,获得粘接胶层安全余量云图,方便设计人员参考。最后,通过实车模型验证了该强度校核方法的简单、有效性。

关键词: 湿热循环, 剩余强度, 正剪比, 高速动车组, 安全余量

Abstract:

A method for checking the bonding strength of high-speed Electric Multiple Units (EMU) side window based on residual strength is proposed from the application point of engineering considerations. This method enables to check the bonding strength of the adhesive layer by combination of accelerated aging experiments and simulation analysis. Using the implementation of the program to complete the test results of the display, obtaining the safety margin cloud map of adhesive layer, which is convenient for the engineering staff. Finally, the effectiveness of the method is verified by the actual vehicle model.

Key words: hydrothermal cycle, residual strength, normal-shear ratio, EMU train, safety margin

中图分类号: 

  • U266.2

表1

粘接材料参数"

材料杨氏模量/MPa泊松比密度/(kg·m-3
ISR 70-084.30.441400
铝合金71 0000.332730

图1

对接和单搭接接头几何尺寸"

图2

嵌接接接头几何尺寸"

图3

嵌接接头胶层应力方向"

图4

湿热循环老化周期"

表2

耐候性粘接试件在高温环境下的试验测试数据 (specimens under high temperatureenvironment MPa)"

试件

编号

粘接试件角度/(°)
9075604530150
14.714.314.414.323.803.603.73
24.414.594.293.944.023.824.07
34.534.444.374.254.274.323.70
44.714.674.424.144.094.323.90
54.674.754.654.503.943.653.97

表3

不同正剪比试件剩余强度值"

粘接角度/(°)正剪比总应力/MPa正应力/MPa剪应力/MPa
90+∞4.614.610.00
753.734.554.391.18
601.734.433.842.22
451.004.232.992.99
300.584.032.013.49
150.273.951.023.82
00.003.900.003.90

图5

粘接结构强度校核曲线"

图6

应力坐标变换原理图"

图7

强度评价原理图"

图8

抬车工况(左前强制位移)下车体模型"

图9

危险侧窗粘接胶层变形云图"

图10

强度校核方法执行程序流程图"

图11

高速动车组侧窗粘接结构强度校核结果安全余量图"

1 Marques E A S, da Silva L F M, Banea M D, et al. Adhesive joints for low-and high-temperature use: an overview[J]. The Journal of Adhesion, 2015,91(7):556-585.
2 Xu W, Wei Y G. Assessments for impact of adhesive properties: modeling strength of metallic single lap joints[J]. Journal of Adhesion Science and Technology, 2013, 27(1):1-21.
3 庄蔚敏, 施宏达, 解东旋,等. 钢铝异质无铆钉粘铆复合连接胶层厚度分布[J]. 吉林大学学报:工学版, 2020, 50(1):100-106.
Zhuang Wei-min,Shi Hong-da,Xie Dong-xuan, et al. Thickness distribution of adhesive layer in dissimilar clinch-adhesive hybrid joint with steel and aluminum alloy[J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1):100-106.
4 Kinloch A J. Toughening epoxy adhesives to meet today's challenges[J]. Mrs Bulletin, 2003, 28(6): 445-448.
5 Banea M D, da Silva L F M, Campilho R. Moulds design for adhesive bulk and joint specimens manufacturing[J]. Assembly Automation, 2012, 32(3):284-292.
6 那景新, 刘浩垒, 范以撒, 等. 湿热环境对车用粘接剂拉伸强度的影响[J]. 吉林大学学报:工学版, 2019, 49(3):822-828.
Na Jing-xin,Liu Hao-lei,Fan Yi-sa, et al. Effect of hygrothermal environment on vehicle adhesive tensile strength[J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3):822-828.
7 Spiryagin M, Lee K S, Yoo H H, al et, Modeling of adhesion for railway vehicles[J]. Journal of Adhesive Science and Technology, 2008, 22(10):1017-1034.
8 Grant L D R, Adams R D, Silva L F M D. Effect of the temperature on the strength of adhesively bonded single lap and T joints for the automotive industry[J]. International Journal of Adhesion and Adhesives, 2009, 29(5):535-542.
9 He X, Gu F, Ball A. Fatigue behaviour of fastening joints of sheet materials and finite element analysis[J]. Advances in Mechanical Engineering, 2013, 2013(3):533-542.
10 Pulung N I, Arief B B, Muhammad A. Evaluation of bonding strength and fracture criterion for aluminum alloy-woven composite adhesive joint based on cohesive zone model[J]. International Journal of Adhesion and Adhesives, 2018, 85:193-201.
11 Hart-Smith L J. Adhesive-bonded single-lap joints[EB/OL]. [2020-02-02].
12 Adams R D, Comyn J, Wake W C. Structural Adhesive Joints in Engineering[M]. Amsterdam: Elsevier Applied Science Publishers, 1997.
13 Adams R D, Harris J A. The influence of local geometry on the strength of adhesive joints[J]. International Journal of Adhesion and Adhesives, 1987, 7(2):69-80.
14 Alfano M, Furgiuele F, Leonardi A, et al. Mode I fracture of adhesive joints using tailored cohesive zone models[J]. International Journal of Fracture, 2009, 157(1):193-204.
15 Qiao Pi-zhong, Chen Ying. Cohesive fracture simulation and failure modes of FRP-concrete bonded interfaces[J]. Theoretical and Applied Fracture Mechanics, 2008, 49(2):213-225.
16 Feraren P, Jensen H M. Cohesive zone modelling of interface fracture near flaws in adhesive joints[J]. Engineering Fracture Mechanics, 2004, 71(15):2125-2142.
17 Moura M F S F D, Gonçalves J P M, Chousal J A G, et al. Cohesive and continuum mixed-mode damage models applied to the simulation of the mechanical behaviour of bonded joints[J]. International Journal of Adhesion and Adhesives, 2008, 28(8):419-426.
18 Abdel W M M, Ashcroft I A, Crocombe A D, et al. Prediction of fatigue thresholds in adhesively bonded joints using damage mechanics and fracture mechanics[J]. Journal of Adhesion Science and Technology, 2001, 15(7):763-781.
19 Abdel W M M, Hilmy I, Ashcroft I A, et al. Evaluation of fatigue damage in adhesive bonding: part 1: bulk adhesive[J]. Journal of Adhesion Science and Technology, 2010, 24(2):305-324.
20 Martiny P, Lani F, Kinloch A J, et al. A multiscale parametric study of mode I fracture in metal-to-metal low-toughness adhesive joints[J]. International Journal of Fracture, 2012, 173(2):105-133.
21 Weißgraeber P, Becker W. Finite fracture mechanics model for mixed mode fracture in adhesive joints[J]. International Journal of Solids and Structures, 2013, 50(14/15):2383-2394.
22 Hutchinson J W, Suo Z. Mixed mode cracking in layered materials[J]. Advances in Applied Mechanics, 1992, 29(8):63-191.
23 Wang C H, Rose L R F. Compact solutions for the corner singularity in bonded lap joints[J]. International Journal of Adhesion and Adhesives, 2000, 20(2):145-154.
24 Na J X, Liu Y, Cai L, et al. An adhesive joint strength evaluation method and its application in mechanical engineering[J]. Journal of Adhesive Science and Technology, 2015, 30(2):131-144.
25 . Ahesive bonding of railway vehicles and parts—part 2: qualification of manufacturer of adhesive bonded materials, quality assurance[S].
26 Wang C H, Rose L R F. Compact solutions for the corner singularity in bonded lap joints[J]. International Journal of Adhesion and Adhesives, 2000, 20(20):145-154.
27 . 轨道车辆及部件的粘接[S].
28 Na J X, Liu Y, Fan Y S, et al. Effect of temperature on the joint strength of a silyl modified polymer based adhesive[J]. The Journal of Adhesion, 2017,93(8): 626-639.
[1] 慕文龙,那景新,谭伟,王广彬,申浩,栾建泽. 基于FTIR分析的CFRP-铝合金粘接接头剩余强度预测[J]. 吉林大学学报(工学版), 2021, 51(1): 139-146.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!