吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (1): 204-210.doi: 10.13229/j.cnki.jdxbgxb20200794
• 通信与控制工程 • 上一篇
Xin-bo LI(),Xiao-yu WANG,Hou-yu LI,Liang-xu JIANG,Bo GUAN,Wang WANG
摘要:
针对传统均匀圆形阵列孔径受限的问题,设计了一种互质圆形阵列,并在此基础上,研究了一种基于相位模式激励的二维波达方向估计方法。首先利用两个均匀圆形子阵列进行堆叠形成互质圆形阵列结构。然后,基于相位模式变换算法将元素空间问题转化到波束空间,将互质圆形阵列合成类似于 ULA 的范德蒙结构且中心埃尔米特对称的阵列流型,减小谱峰搜索维度。最后,通过酉变换实现阵列流型的实数化,降低算法复杂度。理论分析和仿真实验表明:在相同条件下,相比于均匀圆形阵列MUSIC算法,所提互质圆形阵列相位模式激励MUSIC算法的运行时间从1.825 s降至0.622 s,阵列孔径增大MN/(M+N-2)倍,具备更高的波达方向估计精度和系统实时性,并对相近源具有较高的估计分辨率。
中图分类号:
1 | 单泽彪, 刘小松, 王春阳, 等. 多快拍加权平滑范数DOA估计[J]. 光学精密工程, 2017, 25(10s): 167-173. |
Shan Ze-biao, Liu Xiao-song, Wang Chun-yang, et al. Multi-shot weighted smoothing norm DOA estimation[J]. Opt Precision Eng, 2017, 25(10s): 167-173. | |
2 | 李新波, 姜良旭, 刘国君, 等. 用于声矢量阵列目标波达方向跟踪的粒子滤波算法[J]. 光学精密工程, 2015, 23(10z): 605-612. |
Li Xin-bo, Jiang Liang-xu, Liu Guo-jun, et al. Particle filter algorithm for tracking the direction of arrival of acoustic vector array targets[J]. Opt Precision Eng, 2015, 23(10z): 605-612. | |
3 | 赵洋, 李新波, 石要武. 声矢量阵列波达方向估计的四元数空间稀疏分解[J]. 光学精密工程, 2018, 26(3): 715-722. |
Zhao Yang, Li Xin-bo, Shi Yao-wu. Sparse decomposition of quaternion space for direction of arrival estimation of acoustic vector array[J]. Opt Precision Eng, 2018, 26(3): 715-722. | |
4 | 张小飞, 林新平, 郑旺, 等. 互质阵中空间谱估计研究进展[J]. 南京航空航天大学学报, 2017, 49(5): 635-644. |
Zhang Xiao-fei, Lin Xin-ping, Zheng Wang, et al. Research progress of spatial spectrum estimation in coprime arrays[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2017, 49(5): 635-644. | |
5 | Vaidyanathan P P, Pal P. Sparse Sensing With Co-Prime Samplers and Arrays[J]. IEEE Transactions on Signal Processing, 2011, 59(2): 573-586. |
6 | Vaidyanathan P P, Pal P. Theory of Sparse Coprime Sensing in Multiple Dimensions[J]. IEEE Transactions on Signal Processing, 2011, 59(8): 3592-3608. |
7 | 张彦奎, 许海韵, 巴斌, 等. 基于互质阵列重构的高维波达方向估计算法[J]. 电子学报, 2018, 46(12): 2923-2929. |
Zhang Yan-kui, Xu Hai-yun, Ba Bin,et al. High-dimensional DOA estimation algorithm based on coprime array reconstruction[J]. Electronic Journal, 2018, 46(12): 2923-2929. | |
8 | Wang X M, Wang X. Hole identification and filling in k-times extended co-prime arrays for highly efficient DOA estimation[J]. IEEE Transactions on Signal Processing, 2019, 67(10): 2693-2706. |
9 | 周成伟, 郑航, 顾宇杰, 等. 互质阵列信号处理研究进展:波达方向估计与自适应波束成形[J]. 雷达学报, 2019, 8(5):558-577. |
Zhou Cheng-wei, Zheng Hang, Gu Yu-jie, et al. Research progress of coprime array signal processing: direction of arrival estimation and adaptive beamforming[J]. Journal of Radar, 2019, 8(5):558-577. | |
10 | 金强, 汤亚鸽, 杨明. 基于互质阵列的时延和到达角度联合估计算法[J]. 科技创新与应用, 2019(24): 140-141. |
Jin Qiang, Tang Ya-ge, Yang Ming. Joint estimation algorithm of time delay and angle of arrival based on coprime array[J]. Technological Innovation and Application, 2019(24): 140-141. | |
11 | Zhou C, Gu Y, He S, et al. A robust and efficient algorithm for coprime array adaptive beamforming[J]. IEEE Transactions on Vehicular Technology, 2018, 67(2): 1099-1112. |
12 | di Martino G, Iodice A. Passive beamforming with coprime arrays[J]. Radar, Sonar & Navigation, 2017, 11(6): 964-971. |
13 | Li J, Li D, Jiang D, et al. Extended-aperture unitary root MUSIC-Based DOA estimation for coprime array[J]. IEEE Communications Letters, 2018, 22(4): 752-755. |
14 | Elbir A M. L-shaped coprime array structures for DOA estimation[J]. Multidimensional Systems & Signal Processing, 2019,28(9):205-219. |
15 | Zhang Zhi, Guo Yu, Huang Yu-zheng, et al. A 2-D DOA estimation method with reduced complexity in unfolded coprime L-shaped array[J]. IEEE Systems Journal, 2021,15(1):407-410. |
16 | Hui Z, Zhang X F, Wang Z, et al. DOA estimation of noncircular signals for unfolded coprime linear array: identifiability, DOF and algorithm[J]. IEEE Access, 2018, 6: 29382-29390. |
17 | Wang Z, Zhang X F, Pan G, et al. DOA estimation for coprime linear arrays: an ambiguity-free method involving full DOFs[J]. IEEE Communications Letters, 2018, 22(3): 562-565. |
18 | 孙兵, 阮怀林, 吴晨曦, 等. 基于Toeplitz协方差矩阵重构的互质阵列DOA估计方法[J]. 电子与信息学报, 2019, 41(8): 1924-1930. |
Sun Bing, Ruan Huai-lin, Wu Chen-xi, et al. Coprime array DOA estimation method based on Toeplitz covariance matrix reconstruction[J]. Journal of Electronics and Information,2019, 41(8): 1924-1930. | |
19 | 安云飞. 基于均匀圆阵的MUSIC快速测向算法研究[D]. 哈尔滨: 哈尔滨工程大学信息与通信工程学院, 2014. |
An Yun-fei. Research on MUSIC fast direction finding algorithm based on uniform circular array[D]. Harbin: College of Information and Communication Engineering,Harbin Engineering University, 2014. | |
20 | 王芳, 闫哲, 罗景青. 基于模式空间变换的宽带波束形成方法[J]. 计算机工程与应用, 2011, 47(17): 128-130. |
Wang Fang, Yan Zhe, Luo Jing-qing. Broadband beam forming method based on mode space transformation[J]. Computer Engineering and Applications, 2011, 47(17): 128-130. | |
21 | 张小飞. 阵列信号处理的理论与应用[M]. 北京:国防工业出版社, 2013. |
22 | 闫金山, 彭秀艳, 王成鹏. 基于酉变换的虚拟阵列DOA估计算法[J]. 哈尔滨工业大学学报, 2012, 44(4): 136-140. |
Yan Jin-shan, Peng Xiu-yan, Wang Cheng-peng. Virtual array DOA estimation algorithm based on unitary transformation[J]. Journal of Harbin Institute of Technology, 2012, 44(4): 136-140. |
[1] | 李新波, 孙海欣, 李晓青, 赵洋, 梁亮, 房小朋. 基于四元数MUSIC算法的声矢量传感器阵列二维波达角估计[J]. 吉林大学学报(工学版), 2014, 44(5): 1453-1459. |
[2] | 司伟建, 吴迪, 陈涛. 基于部分重合信号的空间谱估计新方法[J]. 吉林大学学报(工学版), 2014, 44(2): 490-496. |
[3] | 王茂林,刘少伟,孙晓东. 复杂噪声背景下正弦频率估计新方法[J]. 吉林大学学报(工学版), 2009, 39(增刊2): 371-0375. |
[4] | 孙晓东, 石要武, 于晓辉. 混沌干扰背景下的正弦频率估计新方法[J]. 吉林大学学报(工学版), 2009, 39(05): 1353-1357. |
[5] | 周欣,石要武,郭宏志 . 多径信号的二维DOA和极化参数同时估计算法[J]. 吉林大学学报(工学版), 2009, 39(03): 797-0802. |
[6] | 魏小丽,陈建,林琳 . 基于空间平滑算法的二维相干源DOA估计[J]. 吉林大学学报(工学版), 2008, 38(05): 1160-1164. |
[7] | 黄家才,石要武,周欣 . 基于四阶累积量的极化近场源距离、频率及到达角的联合估计算法[J]. 吉林大学学报(工学版), 2006, 36(06): 973-0977. |
[8] | 石宇, 王树勋,黄志强 . 基于多级维纳滤波器的信源参数估计[J]. 吉林大学学报(工学版), 2006, 36(05): 761-0765. |
[9] | 刘若伦, 王树勋. 二维DOA估计的高分辨阵列(HRA)[J]. 吉林大学学报(工学版), 2000, 30(01): 90-94. |
|