吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (10): 2447-2455.doi: 10.13229/j.cnki.jdxbgxb20210263

• 通信与控制工程 • 上一篇    

基于多阵列合成孔径的局部超声阵列聚焦方法

陈建1(),于帆1,林琳1,孙铭会2   

  1. 1.吉林大学 通信工程学院,长春 130022
    2.吉林大学 计算机科学与技术学院,长春 130012
  • 收稿日期:2021-03-28 出版日期:2022-10-01 发布日期:2022-11-11
  • 作者简介:陈建(1977-),男,教授,博士.研究方向:人机交互,无线定位.E-mail:chenjian@jlu.edu.cn
  • 基金资助:
    国家自然科学基金重点项目(61631010)

Local ultrasound array focusing method based on multiarray synthetic aperture

Jian CHEN1(),Fan YU1,Lin LIN1,Ming⁃hui SUN2   

  1. 1.College of Communication Engineering,Jilin University,Changchun 130022,China
    2.College of Computer Science and Technology,Jilin University,Changchun 130012,China
  • Received:2021-03-28 Online:2022-10-01 Published:2022-11-11

摘要:

针对增大超声波阵列孔径虽然能够提高超声波聚焦的精度,但同时带来功耗和聚焦噪声的增加的问题,提出了一种基于多阵列合成孔径的局部超声阵列聚焦方法。该方法根据超声波发射器的辐射角度确定参与聚焦的发射器数目,通过减少同时工作的发射器数目降低功耗,减小噪声。对比测试了局部阵列聚焦方法和全阵列聚焦方法的聚焦精度和功耗。结果表明,相比于全阵列聚焦方法,本文所提方法的聚焦精度略有提高,聚焦强度减小了5%,但功耗降低了31%。

关键词: 通信与信息系统, 空中触觉, 超声波触觉, 超声波发射器阵列

Abstract:

Increasing the size of transducer array can improve the accuracy of focusing, but it also brings the increase of power consumption and focusing noise. To solve this problem, a local ultrasound array focusing method based on multi array synthetic aperture was proposed.The number of focused transducer was determined by proposed method according to the radiation angle of transducer, and power consumption and noise were reduced by reducing the number of transducer working at the same time. The focusing accuracy and power consumption of local array focusing method and full array focusing method are tested. The results show that, compared with the full array focusing method, the focusing accuracy of the proposed method is slightly improved, the focusing intensity is reduced by 5%, but the power consumption is reduced by 31%.

Key words: communication and information system, aerial tactile, ultrasound tactile, ultrasound transducer array

中图分类号: 

  • TN958

图1

多阵列聚焦原理示意图"

图2

超声波触觉反馈系统结构框图"

图3

驱动信号生成示意图"

图4

移位寄存器长度设置示意图(a)控制子单元ij根据系统时钟和数据发送使能信号接收计算单元发送的延迟数据Datamn 、发射器状态信号Smn 、发射器的驱动信号xIn(k)。"

图5

mn通道移位寄存器结构示意图"

图6

多通道信号延迟控制示意图"

图7

四阵列超声波触觉反馈装置"

图8

实验装置"

图9

焦点附近归一化声压分布图"

图10

不同调制频率与高度时焦点附近归一化声压分布图"

图11

系统聚焦场景"

1 Hoshi T, Abe D, Shinoda H. Adding tactile reaction to hologram[C]∥RO-MAN 2009-The 18th IEEE International Symposium on Robot and Human Interactive Communication, Toyama, Japan, 2009: 7-11.
2 Minamizawa K, Kamuro S, Fukamachi S, et al. GhostGlove: Haptic existence of the virtual world[C]//The 35th International Conference on Computer Graphics and Interactive Techniques,Los Angeles,USA,2008.
3 Kim S C, Kim C H, Yang T H, et al. SaLT: small and lightweight tactile display using ultrasonic actuators[C]∥The 17th IEEE International Symposium on Robot and Human Interactive Communication, Munich,Germany, 2008: 430-435.
4 Gurocak H, Jayaram S, Parrish B, et al. Weight sensation in virtual environments using a haptic device with air jets[J]. J Comput Inf Sci Eng, 2003, 3(2): 130-135.
5 Tsalamlal M Y, Issartel P, Ouarti N, et al. HAIR: HAptic feedback with a mobile AIR jet[C]∥IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, 2014: 2699-2706.
6 Sodhi R, Poupyrev I, Glisson M, et al. AIREAL: interactive tactile experiences in free air[J]. ACM Transactions on Graphics (TOG), 2013, 32(4): 1-10.
7 Jun J H, Park J R, Kim S P, et al. Laser-induced thermoelastic effects can evoke tactile sensations[J]. Scientific Reports, 2015, 5(1): No. 11016.
8 Lee H, Kim J S, Kim J Y, et al. Mid-air tactile stimulation using indirect laser radiation[J]. IEEE Transactions on Haptics, 2016, 9(4): 574-585.
9 Ochiai Y, Kumagai K, Hoshi T, et al. Cross-field aerial haptics: Rendering haptic feedback in air with light and acoustic fields[C]∥Proceedings of the CHI Conference on Human Factors in Computing Systems, San Jose, USA, 2016: 3238-3247.
10 Hoshi T, Takahashi M, Iwamoto T, et al. Noncontact tactile display based on radiation pressure of airborne ultrasound[J]. IEEE Transactions on Haptics, 2010, 3(3): 155-165.
11 Makino Y, Furuyama Y, Inoue S, et al. HaptoClone (Haptic-Optical Clone) for mutual tele-environment by real-time 3D image transfer with midair force Feedback[C]∥Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, San Jose, USA, 2016: 1980-1990.
12 Hasegawa K, Shinoda H. Aerial vibrotactile display based on multiunit ultrasound phased array[J]. IEEE Transactions on Haptics, 2018, 11(3): 367-377.
13 Qian Y, Salehian A, Han S W, et al. Design of an ultrasonic tactile sensor using electro-mechanical analogy[J]. Ultrasonics, 2020, 105: No. 106129.
14 Awatani J. Studies on acoustic radiation pressure. i. (general considerations)[J]. Journal of the Acoustical Society of America, 1955, 27(2):278-281.
15 Hasegawa T, Kido T, Iizuka T, et al. A general theory of Rayleigh and Langevin radiation pressures[J]. Acoustical Science and Technology, 2000, 21(3): 145-152.
16 Vallbo A B, Johansson R S. Properties of cutaneous mechanoreceptors in the human hand related to touch sensation[J]. Hum Neurobiol, 1984, 3(1): 3-14.
17 Chen J, Yu F, Wang Z Q, et al. Multichannel ultrasound focusing delay control method based on variable-length shift register for airborne ultrasound tactile feedback[J]. IEEE Access, 2020, 8: 24904-24913.
[1] 孙洪亮,沈伟达,陈玲玲. 时延QoS约束下的混合业务带宽补偿算法[J]. 吉林大学学报(工学版), 2022, 52(8): 1912-1917.
[2] 侯春萍,赵春月,王致芃,田海瑞. 基于有效异常样本构造的视频异常检测算法[J]. 吉林大学学报(工学版), 2021, 51(5): 1823-1829.
[3] 王义君,张有旭,缪瑞新,豆佳敏. 5G中基于系统中断概率的D2D资源分配算法[J]. 吉林大学学报(工学版), 2021, 51(1): 331-339.
[4] 胡钊政,李招康,陶倩文. 基于分布式二维激光测距仪的室内行人检测与跟踪[J]. 吉林大学学报(工学版), 2020, 50(2): 719-729.
[5] 赵鹏,蒋宇中,陈斌,李春腾,张杨勇. 基于局部方差域自适应Blanking的超低频信道噪声抑制方法[J]. 吉林大学学报(工学版), 2019, 49(5): 1696-1705.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!