吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (4): 950-958.doi: 10.13229/j.cnki.jdxbgxb20211034

• 通信与控制工程 • 上一篇    

基于SESTH的线性调频连续波激光雷达信号时延估计

李雪梅1,2(),王春阳1,3(),刘雪莲3,谢达1   

  1. 1.长春理工大学 电子信息工程学院,长春 130022
    2.白城师范学院 机械与控制工程学院,吉林 白城 137000
    3.西安工业大学 西安市主动光电成像探测技术重点实验室,西安 710021
  • 收稿日期:2021-10-04 出版日期:2022-04-01 发布日期:2022-04-20
  • 通讯作者: 王春阳 E-mail:lixuemei556677@163.com;wangchunyang19@163.com
  • 作者简介:李雪梅(1973-),女,副教授,博士研究生. 研究方向:光电信息处理.E-mail:lixuemei556677@163.com
  • 基金资助:
    吉林省教育厅科学技术研究重点规划项目(JJKH20220014KJ)

Time delay estimation of linear frequency-modulated continuous-wave lidar signals via SESTH

Xue-mei LI1,2(),Chun-yang WANG1,3(),Xue-lian LIU3,Da XIE1   

  1. 1.School of Electronic and Information Engineering,Changchun University of Science and Technology,Changchun 130022,China
    2.School of Mechanical and Control Engineering,Baicheng Normal University,Baicheng 137000,China
    3.Xi'an Key Laboratory of Active Photoelectric Imaging Detection Technology,Xi'an Technological University,Xi'an 710021,China
  • Received:2021-10-04 Online:2022-04-01 Published:2022-04-20
  • Contact: Chun-yang WANG E-mail:lixuemei556677@163.com;wangchunyang19@163.com

摘要:

针对线性调频连续波(Linear frequency-modulated continuous-wave,LFMCW)激光雷达低信噪比下目标回波信号参数难以提取的问题,提出了一种基于SESTH(Synchroextracting S transform based on Hough transform)变换的信号时延估计方法。首先,融入Hough变换,构建了Chirp信号的SESTH变换模型。然后,推导出Chirp信号的初始频率和调频率参数估计模型。最后,利用LFMCW激光雷达发射信号与回波信号的时频特性,构建Chirp信号的时延估计模型,有效解算出目标与雷达间的相对距离。为验证本文算法的有效性,进行了仿真对比分析。结果表明:本文SESTH算法在时延为4.34 μs时,相对误差最小值为3.191×10-6;在SNR=-6~25?dB情况下,相对均方根误差最小值为0.014 65,且对目标回波信号执行一次仅需0.0499 s。

关键词: 信号与信息处理, SESTH变换, 时延估计, LFMCW激光雷达, Chirp信号

Abstract:

The parameters extraction of the target echo signal of linear frequency-modulated continuous-wave (LFMCW) lidar is more difficult under low signal-to-noise ratio (SNR). To solve this problem, a signal time delay estimation method based on synchroextracting S transform based on the Hough transform (SESTH) is proposed. Firstly, integrating Hough transform, the SESTH model of a Chirp signal was constructed. Then, the parameter estimation models of initial frequency and frequency modulation rate of the Chirp signal were derived. Finally, using the time-frequency characteristics of the LFMCW lidar transmitted signal and echo signal, the time delay estimation model of a Chirp signal was constructed, and the relative distance between a target and the lidar was effectively calculated. In order to verify the effectiveness of the algorithm, simulation comparative analysis were carried out. The results show that the minimum relative error value of the proposed SESTH is 3.191×10-6 when the time delay is 4.34 μs; the minimum relative root mean square error value is 0.014 65 in the case of SNR=-6~25?dB, and only 0.0499 s is consumed to execute the target echo signal once.

Key words: signal and information processing, synchroextracting S transform based on the Hough transform, time delay estimation, linear frequency-modulated continuous-wave lidar, Chirp signal

中图分类号: 

  • TN911.7

图1

Hough变换原理"

表1

Chirp 信号x1(t)和x2(t)的参数"

参 数数值参数数值
幅值1扫频周期/μs10
衰减系数1初始频率/GHz1.6
采样频率/GHz64扫频带宽/GHz6
时延/μs0.5

图2

无噪声下变换的时频表示"

图3

在SNR=5?dB下变换的时频表示"

表2

无噪声条件下Rényi熵估计值"

变 换Rényi 熵值变 换Rényi 熵值
STFT0.4260GST0.5222
ST0.5052WVD1.8471
SET0.0795HHT0.3595
SEST0.0341

表3

在SNR=5?dB下Rényi熵估计值"

变 换Rényi 熵值变 换Rényi 熵值
STFT1.2442GST1.4071
ST1.3374WVD2.6882
SET1.2287HHT1.1817
SEST0.2528

图4

各种变换峰值搜索"

图5

SESTH的时延估计相对误差曲线"

图6

Chirp信号时延参数估计精度的相对均方根误差曲线"

表4

算法运行时间比较"

变 换运行时间/s变 换运行时间/s
STFTH93.1186WVDH1.1813
STH41.6180HHTH0.8467
GSTH32.2572SESTH0.0681
1 Chimenti R V, Dierking M P, Powers P E, et al. Sparse frequency LFM ladar signals[J]. Optics Express, 2009, 17(10): 8302-8309.
2 Tsuchida H. Regression analysis of FMCW-LiDAR beat signals for non-linear chirp mitigation[J]. Electronics Letters, 2019, 55(16): 914-916.
3 Sharma K K, Joshi S D. Time delay estimation using fractional Fourier transform[J]. Signal Processing, 2007, 87(5): 853-865.
4 宋杰, 唐小明, 何友. 脉冲制无源雷达动目标时延快速估计方法[J].电子科技大学学报, 2009, 38(6): 908-912, 978.
Song Jie, Tang Xiao-ming, He You. Fast method for time delay estimation of moving targets in passive pulse radar systems[J]. Journal of University of Electronic Science and Technology of China, 2009, 38(6): 908-912, 978.
5 Riemensberger Johann, Lukashchuk Anton, Karpov Maxim, et al. Massively parallel coherent laser ranging using a soliton microcomb[J]. Nature, 2020, 581(7807): 164-170.
6 Xu Zhong-yang, Zhang Hong-xiang, Chen Kai, et al. FMCW LiDAR using phase-diversity coherent detection to avoid signal aliasing[J]. IEEE Photonics Technology Letters, 2019, 31(22): 1822-1825.
7 Fardoost A, Vanani F G, Wen H, et al. Few-mode frequency-modulated LiDAR receivers[J]. Optics Letters, 2020,45(11): 3127-3130.
8 戴延中, 李志舜. 基于Wigner-Ville分布的宽带回波到达时刻估计方法[J]. 声学学报, 2002, 27(1): 84-87.
Dai Yan-zhong, Li Zhi-shun. Time of arrival estimation of wide band echoes based on wignerville distribution[J]. Acta Acustica, 2002, 27(1): 84-87.
9 蒋忠进, 林君, 陈祖斌. 离散小波变换在Chirp信号检测与时延估计中的应用[J]. 自动化仪表, 2003, 43(2): 58-61.
Jiang Zhong-jin, Lin Jun, Chen Zu-bin. The application of discrete small wave transfer in chirp signal detection and delay estimation[J]. Process Automation Instrumentation, 2003, 43(2): 58-61.
10 陆侃, 卓永宁. UWB CHIRP信号的多径时延频域提取方法[J]. 通信技术, 2010, 43(12): 15-17.
Lu Kan, Zhou Yong-ning. Extraction of multipath time delay in frequency domain to UWB chirp signal[J]. Communications Technology, 2010, 43(12):15-17.
11 Yu Ge, Sheng-chun Piao, Han Xiao. Fractional fourier transform-based detection and delay time estimation of moving target in strong reverberation environment[J]. IET Radar Sonar & Navigation, 2017, 11(9): 1367-1372 .
12 曲杨, 王春晖, 高洁, 等. 基于连续线性调频激光器的测距方法[J]. 红外与激光工程, 2015, 44(6): 1779-1783.
Qu Yang, Wang Chun-hui, Gao Jie, et al. Ranging measurement based on linear frequency modulated continuous laser[J]. Infrared and Laser Engineering, 2015, 44(6): 1779-1783.
13 漆翔宇, 刘会杰, 马天鸣. 基于Morlet小波的LFM雷达信号到达时间估计[J]. 电子设计工程, 2017, 25(24): 59-64.
Qi Xiang-yu, Liu Hui-jie, Ma Tian-ming. Arrival time estimation of LFM radar signals based on Morlet wavelets transform[J]. Electronic Design Engineering, 2017, 25(24): 59-64.
14 Ren Jia-qi, Dai Xu-chu, Li Hui. Repeater jamming suppression technology based on HHT[C]∥IEEE Radar Conference,Philadelphia, USA, 2016.
15 Stockwell R G, Mansinha L, Lowe R P. Localization of the complex spectrum: the S transform[J]. IEEE Transactions on Signal Processing, 1996, 44(4): 998-1001.
16 Xin Yu, Hao Hong, Li Jun. Time-varying system identification by enhanced empirical wavelet transform based on synchroextracting transform[J]. Engineering Structures, 2019, 196: No. 10931313.
17 Lim S, Lee S. Hough transform based ego-velocity estimation in automotive radar system[J]. Electronics Letters, 2021, 57(2): 80-82.
18 Yu Gang, Yu Ming-jin, Xu Chuan-yan. Synchroextracting transform[J]. IEEE Transactions on Industrial Electronics, 2017, 64(10): 8042-8054.
19 Baraniuk R G, Flandrin P, Janssen A J E M, et al. Measuring time-frequency information content using the Rényi entropies[J]. IEEE Transaction on Information Theory, 2001, 47(4): 1391-1409.
20 Wang Hong-wei, Fan Xiang-yu, Chen You, et al. Recognition method of LFM signals based GSTH transform[J]. Systems Engineering and Electronics, 2016, 38(10): 2228-2234.
21 Niu Meng, Liu Guang-bin. Multi component LFM signal time frequency detection based on S-hough transform[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2007, 27(3): 266-268.
22 Zhang Wei-ke, Cui Kai-bo, Wu Wei-wei, et al. DOA estimation of LFM signal based on single-source time-frequency points selection algorithm by using the Hough transform[J]. Radio Engineering, 2019, 27(1): 265-275.
23 Xu Fen-fei, Bao Qing-long, Chen Zeng-ping, et al. Parameter Estimation of multi-component lfm signals based on STFT+Hough transform and fractional Fourier transform[C]∥The 2nd IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), Xi'an, China, 2018.
24 Yuan Ye, Mei Wen-bo. Chirp-Like Jammer excision in DSSS communication systems using combined hht spectrum and Hough transform[C]∥The 4th IEEE International Conference on Circuits and Systems for Communications, Shanghai, China, 2008.
25 Dong Yong-kang, Zhu Zong-da, Tian Xiao-ning, et al. Frequency-modulated continuous-wave LIDAR and 3D imaging by using linear frequency modulation based on injection locking[J]. Journal of Lightwave Technology, 2021, 39(8): 2275-2280.
[1] 窦慧晶,丁钢,高佳,梁霄. 基于压缩感知理论的宽带信号波达方向估计[J]. 吉林大学学报(工学版), 2021, 51(6): 2237-2245.
[2] 金心宇,谢慕寒,孙斌. 基于半张量积压缩感知的粮情信息采集[J]. 吉林大学学报(工学版), 2021, 51(1): 379-385.
[3] 郭立民,陈鑫,陈涛. 基于AlexNet模型的雷达信号调制类型识别[J]. 吉林大学学报(工学版), 2019, 49(3): 1000-1008.
[4] 路伟涛, 杨文革, 洪家财. 改进的小波空域相关滤波算法[J]. 吉林大学学报(工学版), 2015, 45(3): 1005-1011.
[5] 杨巍,石要武. 基于分数阶傅里叶变换的宽带Chirp信号的波达方向角估计[J]. 吉林大学学报(工学版), 2014, 44(3): 818-821.
[6] 李靖, 王树勋, 汪飞. 基于多项式变换的自适应Chirp信号参数估计[J]. 吉林大学学报(工学版), 2004, (4): 617-621.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!