吉林大学学报(工学版) ›› 2013, Vol. 43 ›› Issue (05): 1253-1257.doi: 10.7964/jdxbgxb201305017
张大山1, 董毓利1, 吴亚平2
ZHANG Da-shan1, DONG Yu-li1, WU Ya-ping2
摘要:
为有效地计算混凝土单向板在大变形下的极限承载力,基于屈服线理论提出了考虑受拉薄膜效应的板块平衡法。该方法在建立板块平衡方程时计入了大变形下塑性铰线截面处逐渐显著的钢筋合力的竖向分量,即受拉薄膜效应。进行了3种不同边界条件的6块钢筋混凝土单向板的大变形静力加载试验,获得了荷载-挠度曲线、极限承载力和破坏时的裂缝形态等。将改进后的板块平衡法的计算值与试验结果进行了对比,吻合较好,适于工程设计应用。
中图分类号:
[1] Park R. Tensile membrane behaviour of uniformly loaded rectangular reinforced concrete slabs with full restrained edges[J]. Magazine of Concrete Research, 1964, 16(46):39-44.[2] Morley C T. Yield line theory for reinforced concrete slabs at moderately large deflections[J]. Magazine of Concrete Research, 1967, 19(61): 212-221.[3] 王刚, 王清湘, 刘士润. 钢筋混凝土板的压力膜效应承载力计算方法[J]. 吉林大学学报:工学版, 2010, 40(3):699-704. Wang Gang, Wang Qing-xiang, Liu Shi-run. Calculation method of load capacity compressive membrane effect of reinforced concrete slab[J]. Journal of Jilin University(Engineering and Technology Edition), 2010, 40(3): 699-704.[4] 张先进, 李永春, 吕曼曼. 考虑薄膜效应钢筋混凝土矩形板的极限承载力[J]. 武汉理工大学学报, 2007, 29 (6): 58-61. Zhang Xian-jin, Li Yong-chun, Lyu Man-man. Ultimate bearing capacity of RC rectangular slab considering membrane effect[J]. Journal of Wuhan University of Technology, 2007, 29(6):58-61.[5] Bailey C G. Membrane action of unrestrained lightly reinforced concrete slabs at large displacement[J]. Engineering Structures, 2001, 23(5): 470-483.[6] 李国强, 周昊圣, 郭士雄. 火灾下钢结构建筑楼板的薄膜效应机理及理论模型[J]. 建筑结构学报, 2007, 28(5):40-47. Li Guo-qiang, Zhou Hao-sheng, Guo Shi-xiong. Mechanism and theoretical model of membrane action in slabs of steel buildings subjected to fire[J]. Journal of Building Structures, 2007, 28(5): 40-47.[7] 张娜思, 李国强. 火灾下组合楼板薄膜效应分析的改进方法[J]. 土木工程学报, 2009, 42(3): 29-35. Zhang Na-si, Li Guo-qiang. An innovative analytical method for the membrane action of composite floor slabs in fire[J]. China Civil Engineering Journal, 2009, 42(3):29-35.[8] 董毓利. 用变形和分解原理求混凝土板的受拉薄膜效应[J]. 力学学报, 2010, 42(6): 1180-1187. Dong Yu-li. Calculation of tensile membrane effects of concrete slabs using deformation addictive decomposition theorem[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(6):1180-1187.[9] Dong Y L, Fang Y Y. Determination of tensile membrane effects by segment equilibrium[J]. Magazine of Concrete Research, 2010, 62(1):17-23. |
[1] | 郑一峰, 赵群, 暴伟, 李壮, 于笑非. 大跨径刚构连续梁桥悬臂施工阶段抗风性能[J]. 吉林大学学报(工学版), 2018, 48(2): 466-472. |
[2] | 王腾, 周茗如, 马连生, 乔宏霞. 基于断裂理论的湿陷性黄土劈裂注浆裂纹扩展[J]. 吉林大学学报(工学版), 2017, 47(5): 1472-1481. |
[3] | 郭楠, 张平阳, 左煜, 左宏亮. 竹板增强胶合木梁受弯性能[J]. 吉林大学学报(工学版), 2017, 47(3): 778-788. |
[4] | 张静, 刘向东. 混沌粒子群算法优化最小二乘支持向量机的混凝土强度预测[J]. 吉林大学学报(工学版), 2016, 46(4): 1097-1102. |
[5] | 郭学东, 马立军, 张云龙. 集中力作用下考虑剪切滑移效应的双层结合面组合梁解析解[J]. 吉林大学学报(工学版), 2016, 46(2): 432-438. |
[6] | 赵玉, 李衍赫, 张培, 赵科, 刘伟超. 粘土的动力特性试验[J]. 吉林大学学报(工学版), 2015, 45(6): 1791-1797. |
[7] | 侯忠明, 王元清, 夏禾, 张天申. 移动荷载作用下的钢-混简支结合梁动力响应[J]. 吉林大学学报(工学版), 2015, 45(5): 1420-1427. |
[8] | 王甲春, 阎培渝. 海洋环境下钢筋混凝土中钢筋锈蚀的概率[J]. 吉林大学学报(工学版), 2014, 44(2): 352-357. |
[9] | 柴寿喜, 王沛, 魏丽. 以峰值轴向应变评价麦秸秆和石灰加筋固化盐渍土的抗变形性能 [J]. , 2012, (03): 645-650. |
[10] | 李春良, 王国强, 赵凯军, 朱春凤. 地面荷载作用盾构隧道纵向力学行为[J]. 吉林大学学报(工学版), 2011, 41(增刊2): 180-184. |
[11] | 潘明远, 姚继涛. 钢筋混凝土结构构件的可靠性[J]. 吉林大学学报(工学版), 2010, 40(增刊): 218-0221. |
[12] | 郑文忠, 万夫雄, 李时光. 用无机胶粘贴CFRP布加固混凝土板火灾后受力性能[J]. 吉林大学学报(工学版), 2010, 40(05): 1244-1249. |
[13] | 王刚,王清湘,刘士润. 钢筋混凝土板的压力膜效应承载力计算方法[J]. 吉林大学学报(工学版), 2010, 40(03): 699-0704. |
[14] | 高小建,阚雪峰,杨英姿. 单面干燥条件下掺硅灰混凝土的收缩变形分布[J]. 吉林大学学报(工学版), 2010, 40(03): 694-0698. |
[15] | 经建生1,侯晓萌2 ,郑文忠2. 高温后预应力钢筋和非预应力钢筋的力学性能[J]. 吉林大学学报(工学版), 2010, 40(02): 441-0446. |
|