吉林大学学报(工学版) ›› 2013, Vol. 43 ›› Issue (01): 56-61.

• 论文 • 上一篇    下一篇

含水层构造对抽灌水温变特性的影响

周学志1,2, 高青1,2, 于鸣3, 赵晓文2, 朱天奎2   

  1. 1. 吉林大学 汽车仿真与控制国家重点实验室, 长春 130022;
    2. 吉林大学 热能工程系, 长春 130022;
    3. 吉林大学 材料科学与工程学院, 长春 130022
  • 收稿日期:2012-09-11 出版日期:2013-01-01 发布日期:2013-01-01
  • 通讯作者: 高青(1961-),男,教授,博士生导师.研究方向:能源利用及其高效传热.E-mail:gaoqing@jlu.edu.cn E-mail:gaoqing@jlu.edu.cn
  • 作者简介:周学志(1982-),男,博士研究生.研究方向:地能利用及地下传热.E-mail:cff_zxz@163.com
  • 基金资助:

    国家自然科学基金项目(51076059).

Effect of aquifer structure on water temperature evolution in field of pumping and injecting wells

ZHOU Xue-zhi1,2, GAO Qing1,2, YU Ming3, ZHAO Xiao-wen2, ZHU Tian-kui2   

  1. 1. State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, China;
    2. Department of Thermal Engineering, Jilin University, Changchun 130022, China;
    3. School of Materials Science and Engineering, Jilin University, Changchun 130022, China
  • Received:2012-09-11 Online:2013-01-01 Published:2013-01-01

摘要: 针对不同含水层构造抽灌井群地下温度场的演化规律进行实验研究,分析相同井群抽灌量和几何参数条件下,不同含水层介质的热湿运移规律及热交互影响。研究表明:含水层岩性的变化对井场热贯通时间的影响较大,对后期的热交互影响相对略小。粒块体结构较大的砂砾含水层,其井场热贯通时间明显缩短。含水层介质的分布状态对热交互影响较大,对热贯通时间的影响有大有小。对于均匀分布含水介质,各井抽灌量应尽量均匀分配,推迟热贯通发生和减弱热交互影响。对于非均匀分布含水介质,采用各井配置流量调整,可改善热湿均衡性,避免非均匀含水介质的不利影响。

关键词: 热能工程, 地下水源热泵, 含水层构造, 温变特性, 抽灌井群

Abstract: The evolution of underground temperature field of the pumping and injecting wells area with different aquifer structures was investigated experimentally. The transport behavior of the thermal-wet of different aquifer media and their thermal interaction were analyzed under same total water flow rate and well geometric parameters. The experimental results showed that the effect of aquifer rockyness variation on the occurrence time of the thermal breakthrough is significant while relatively small on the later thermal interaction. For the aquifer with larger size of gravel, the thermal breakthrough advances significantly. The effect of aquifer distribution on the thermal breakthrough is less than thermal interaction. For the homogeneous aquifer medium, the water flow rate of each well should be evenly distributed to postpone the thermal breakthrough and weaker the thermal interaction. For the inhomogeneous aquifer medium, each well should have individual flow adjustment to improve the thermal-wet balance and avoid the adverse influence of aquifer in homogeneity.

Key words: thermal energy engineering, underground source heat pump, aquifer structure, temperature evolution, pumping and injecting wells field

中图分类号: 

  • TK529
[1] Stefano L R, Massimo V C. Open-loop groundwater heat pumps development for large buildings:a case study[J]. Geothermics, 2009, 38(3): 335-345.

[2] Niyazi A, Celalettins, Orhan G. Groundwater contamination mechanism in a geothermal field: a case study of Balcova, Turkey[J]. Journal of Contaminant Hydrology, 2009, 103 (1-2): 13-28.

[3] 崔淑琴,高青,李明,等.地源热泵非连续过程地下传热特性及其控制[J].吉林大学学报:工学版,2006,36(2):172-173. Cui Shu-qin, Gao Qing, Li Ming,et al. Underground heat transfer characteristics in discontinuous operation of GSHP and its control strategy[J]. Journal of Jilin University(Engineering and Technology Edition),2006,36(2):172-173.

[4] Bodvarsson G S, Tsang C F. Injection and thermal breakthrough in fractured geothermal reservoirs[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1983, 20(3): 1031-1048.

[5] Tsang C F, Buscheck T, Douhty C. Aquifer thermal energy storage: a numerical simulation of auburn university field experiments[J]. Water Resources Research, 1981, 17(1): 647-658.

[6] Sykes J F, Lantz R B, Pahwa S B, et al. Numerical simulation of thermal energy storage experiment conducted by auburn university[J]. Ground Water, 1982, 20(5): 569-576.

[7] 何柏荣,孙澈,田春松. 多井系统地热储温度场的数值模拟[J]. 计算物理, 1986, 3(1): 69-76. He Bai-rong, Sun Chen, Tian Chun-song. The numerical simulation temperature field of geothermal reservoir in multiple wells system[J]. Chinese Journal of Computational Physics, 1986, 3(1): 69-76.

[8] 倪龙. 同井回灌地下水源热泵源汇井运行特性研究. 哈尔滨:哈尔滨工业大学,2007. Ni Long. Operation performance research on heat source/sink well of groundwater heat pump with pumping & recharging in the same well. Harbin: Harbin Institute of Technology, 2007.

[9] 周彦章,陈耿. 含水介质地下水热量运移研究综述[J]. 黑龙江水专学报, 2008, 35(2):125-126. Zhou Yan-zhang, Chen Gen. Discussion about study on groundwater thermal transport in aquifer medium[J]. Journal of Heilongjiang Hydraulic Engineering College, 2008, 35(2):125-126.
[1] 徐亮, 兰进, 王明森, 高建民, 李云龙. 旋度对旋转冲击射流传热特性的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1483-1491.
[2] 李见波, 徐士鸣, 刘福森. 车速变化对吸收/压缩混合制冷循环的影响[J]. 吉林大学学报(工学版), 2013, 43(02): 291-297.
[3] 江彦, 高青, 李明, 王丽华. 渗流对地下换热器能量动态蓄存控制的影响[J]. , 2012, 42(05): 1179-1184.
[4] 齐子姝, 高青, 于鸣, 刘研, 白莉. 岩土地下换热器热泵系统长期运行状况预测分析[J]. , 2012, 42(04): 877-881.
[5] 高青1,2,王丽华2,江彦2,李明1,2. 地下蓄能间歇时序影响与作用[J]. 吉林大学学报(工学版), 2011, 41(6): 1565-1570.
[6] 苏俊林,罗小金,矫振伟,黄海珍. 燃用生物质颗粒燃料锅炉的燃烧及排放特性[J]. 吉林大学学报(工学版), 2010, 40(04): 953-0958.
[7] 黄勇, 高青, 马纯强, 张磊, 玄哲浩. 道路融雪化冰过程冰层的热融特性[J]. 吉林大学学报(工学版), 2010, 40(02): 391-0396.
[8] 苏俊林, 戴文仪, 矫振伟. 玉米秸秆颗粒燃料的热工特性[J]. 吉林大学学报(工学版), 2010, 40(02): 386-0390.
[9] 江彦, 高青, 李明, 马纯强, 刘研, 黄勇. 地下蓄能热扩散和传输的能流通量描述[J]. 吉林大学学报(工学版), 2009, 39(05): 1142-1145.
[10] 高青,李明,马纯强,江彦,于鸣 . 地下岩土蓄能过程控制模式[J]. 吉林大学学报(工学版), 2009, 39(03): 593-0597.
[11] 于鸣,高青,乔广,李明,马纯强,江彦 . 地能利用中的蓄能时间效应
[J]. 吉林大学学报(工学版), 2009, 39(02): 321-0325.
[12] 陈华艳,苏俊林,矫振伟 . 生 物 质 型 煤 燃 烧 特 性[J]. 吉林大学学报(工学版), 2008, 38(06): 1281-1286.
[13] 苏俊林,王震坤,矫振伟 . 高效低排放气液直接混合相变换热供热装置[J]. 吉林大学学报(工学版), 2008, 38(02): 278-0282.
[14] 崔淑琴,高青,李明,江彦. 地源热泵非连续过程地下传热特性及其控制[J]. 吉林大学学报(工学版), 2006, 36(02): 172-0176.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!