吉林大学学报(工学版) ›› 2020, Vol. 50 ›› Issue (5): 1590-1599.doi: 10.13229/j.cnki.jdxbgxb20191114

• 车辆工程·机械工程 • 上一篇    

后视镜造型对侧窗水相分布的影响

兰巍(),刘江,辛俐,李婧锡,胡兴军,王靖宇(),桑涛   

  1. 吉林大学 汽车仿真与控制国家重点实验室,长春 130022
  • 收稿日期:2019-12-06 出版日期:2020-09-01 发布日期:2020-09-16
  • 通讯作者: 王靖宇 E-mail:lanwei99@126.com;wangjy@jlu.edu.cn
  • 作者简介:兰巍(1980-),女,副教授,博士.研究方向:汽车空气动力学及造型学.E-mail:lanwei99@126.com
  • 基金资助:
    国家自然科学基金项目(51875238)

Influence of rearview mirror styling on water phase distribution on side windows

Wei LAN(),Jiang LIU,Li XIN,Jing-xi LI,Xing-jun HU,Jing-yu WANG(),Tao SANG   

  1. State Key Laboratory of Automobile Simulation and Control, Jilin University, Changchun 130022, China
  • Received:2019-12-06 Online:2020-09-01 Published:2020-09-16
  • Contact: Jing-yu WANG E-mail:lanwei99@126.com;wangjy@jlu.edu.cn

摘要:

以乘用车后视镜为研究模型,采用格子玻尔兹曼方法,研究其尾部流场特性。将空气动力学与多相流理论相结合,在格子玻尔兹曼方法基础上应用拉格朗日方法,对雨天汽车行驶时后视镜对侧窗造成的水相分布进行研究,探究其污染机理,进而研究镜柱和镜罩两方面造型因素对侧窗的污染影响,其中镜柱包括长度和尺寸,镜罩包括迎风角度、内侧扩散角、前缘倒角和后缘离去角4个因素。结果表明:各因素对侧窗污染位置及污染比重有较大差异。增长镜柱、镜罩内侧扩散角改为0°、减小镜罩前缘倒角、后缘离去角改为0°皆会不同程度降低污染水平,镜柱尺寸和镜罩迎风角对侧窗影响较为复杂,但也可得到较小水平污染结果,各因素对侧窗污染影响并非独立作用。

关键词: 空气动力学, 格子玻尔兹曼方法, 侧窗水污染, 后视镜, 镜柱, 镜罩

Abstract:

Based on the rearview mirrors of sedans, the Lattice Boltzmann method is used to study the flow field characteristics of the rearview mirrors. Combining aerodynamics with multiphase flow theory, the Lagrangian method is applied on the basis of the lattice Boltzmann method to study the water phase distribution on side windows caused by the rearview mirror on rainy days, and to investigate the pollution mechanism. Then the pollution effects of the mirror column and the mirror cover on the side window are studied. The mirror column factors include the length and size, and the mirror cover factors include the windward angle, the inside diffuser angle, the leading edge chamfer angle and the rear departure angle. The Results show that these factors have significant different influences on pollution location and pollution degree of the side windows. Increasing the column length, changing the inside diffuser angle of the cover to 0°, reducing the leading edge chamfer angle of the front cover and changing the rear departure angle to 0° will reduce the pollution level. The influence of the size of the mirror column and the windward angle of the mirror cover on the side window is complicated, but a lower pollution degree can also be obtained. The influence of each factor on the side window pollution is not independent.

Key words: aerodynamics, lattice Boltzmann, side window water pollution, rearview mirror, mirror column, mirror cover

中图分类号: 

  • U461.1

图1

D3Q19模型"

图2

快背式DrivAer模型"

图3

前风窗雨刮器"

图4

计算域及加密区设置"

图5

雨滴发射器示意图"

表1

参数设置"

参数
雨水属性密度/(kg·m-3)1000
黏性/(Pa·s)0.001
表面张力/(N·m-10.0728
重力/(m·s-2)9.81
表面材料属性再夹带模型激活
再夹带长度/mm0.3
飞溅模型激活
破裂模型激活
雨水发射器属性颗粒直径分布Gaussian
降雨量/(mm·hr-117

图6

A柱断面改型方案"

图7

车身表面液膜厚度图"

图8

Z=0.69 m截面水相体积比图"

图9

镜柱长度"

图10

车身表面液膜厚度图"

表2

修改镜柱长度后污染RC值"

项目RCFRCRRC
Base0.1450.5030.360
Modification0.1240.3130.237

图11

Z=0.69 m截面速度流线图对比"

表3

不同镜柱长度污染RC值"

长度RCFRCRRC
00.1450.5030.360
40.1450.4030.300
70.1290.3430.257
100.1240.3130.237

图12

镜柱尺寸"

图13

车身表面液膜厚度图"

表4

修改镜柱尺寸后污染RC值"

项目RCFRCRRC
Base0.1450.5030.360
Modification0.2240.5310.408

图14

Z=0.69 m截面速度流线图对比"

图15

Z=0.69 m截面水相体积比图"

图16

迎风角度"

图17

车身表面液膜厚度图"

表5

修改迎风角度后污染RC值"

项目RCFRCRRC
Base0.1450.5030.360
Modification0.1370.5040.357

表6

不同迎风角度污染RC值"

方案区域面积污染面积RC
0.1370.5040.357
0.1600.4690.345
00.1450.5030.360
-3°0.1490.4750.344
-6°0.1310.3840.282
-9°0.1380.4280.312

图18

车身表面液膜厚度图"

图19

Z=0.66 m截面水相体积比图"

图20

X=1.3 m截面速度流线图"

图21

扩散角"

图22

车身表面液膜厚度图"

表7

修改内侧扩散角后污染RC值"

项目RCFRCRRC
Base0.2240.5310.408
Modification0.0950.4430.304

图23

Z=0.69 m截面速度流线图"

图24

前缘倒角"

图25

车身表面液膜厚度图"

表8

修改前缘倒角后污染RC值"

项目RCFRCRRC
Base0.0950.4430.304
Modification0.0520.4190.272

图26

Z=0.68 m截面水相体积比图"

图27

后缘离去角"

图28

车身表面液膜厚度图"

表9

修改后缘离去角后污染RC值"

项目RCFRCRRC
Base0.1450.5030.360
Modification0.1210.4500.318

图29

Z=0.68 m截面水相体积比图"

图30

优化模型"

图31

车身表面液膜厚度图"

表10

优化后污染RC值"

项目RCFRCRRC
Base0.1450.5030.360
Optimization0.0770.3000.211
1 胡兴军. 汽车空气动力学[M]. 北京: 人民交通出版社, 2014.
2 Hu X, Liao L, Lei Y, et al. A numerical simulation of wheel spray for simplified vehicle model based on discrete phase method[J]. Advances in Mechanical Engineering, 2015, 7(7): 1-8.
3 Adrian P G, Kerry K, Duncan A L. Surface contamination of cars: a review[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2017, 231(9): 1160-1176.
4 Foucart H, Blain E. Water-flow simulation on vehicle panels by taking into account the calculated aerodynamic field[C]∥ SAE Technical Paper, 2005-01-3572.
5 Kruse N, Chen K H. Exterior water management using a custom euler-lagrange simulation approach[C]∥ SAE Technical Paper, 2007-01-0101.
6 Gaylard A P, Fagg M, Bannister M, et al. Modelling a-pillar water overflow: developing CFD and experimental methods[J]. SAE International Journal of Passenger Cars-Mechanical Systems, 2012, 5(2): 789-800.
7 Jilesen J, Spruss I, Kuthada T, et al. Advances in modelling a-pillar water overflow[C]∥ SAE Technical Papers, 2015-01-1549.
8 Gaylard A P, Kirwan K, Lockerby D A. Surface contamination of cars: a review[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2017, 231(9): 1160-1176.
9 Jilesen J, Gaylard A, Linden T, et al. Update on a-pillar overflow simulation[C]∥ SAE Technical Papers, 2018-01-0717.
10 廖庚华, 刘开贺, 孙少云. 某三厢车前侧窗雨污问题分析[C]∥2018中国汽车工程学会汽车空气动力学分会学术年会, 重庆, 2018.
11 Noelting S, Fares E. The lattice-boltzmann method: an alternative to LES for complex aerodynamic and aeroacoustic simulations in the aerospace industry[C]∥ SAE Technical Paper, 2015-01-2575.
12 Kotapati R, Keating A, Kandasamy S, et al. The lattice-boltzmann-VLES method for automotive fluid dynamics simulation, a review[C]∥ SAE Technical Paper, 2009-26-0057.
13 Chen H, Kandasamy S, Orszag S, et al. Extended boltzmann kinetic equation for turbulent flows[J]. Science, 2003, 301(5633): 633-636.
14 ANSYS Inc. FLUENT User's Guide14.0[M]. Canonsburg: ANSYS Inc, 2011.
15 Wieser D, Schmidt H J, Müller S, et al. Experimental comparison of the aerodynamic behavior of fastback and notchback drivAer models[J]. SAE International Journal of Passenger Cars Mechanical Systems, 2014, 7(2): 682-691.
16 王靖宇, 于旭涛, 胡兴军, 等. 汽车外后视镜流致振特性及其流动机理[J]. 吉林大学学报: 工学版, 2017, 47(6): 1669-1676.
Wang Jing-yu, Yu Xu-tao, Hu Xing-jun, et al. Fluid-induced vibration and flow mechanism of automotive external rearview mirror[J]. Journal of Jilin University(Engineering and Technology Edition), 2017, 47(6): 1669-1676.
17 EXA Corporation:Powerflow Best Practices Guide[G].
18 辛俐, 兰巍, 刘江, 等. 汽车涉水车身表面污染仿真及控制[J]. 吉林大学学报: 工学版, 2019, 49(6): 1786-1794.
Xin Li, Lan Wei, Liu Jiang, et al. Simulation and control of pollution on automobile body surface during wading[J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1786-1794.
19 杨小龙, 邹宏伟, 张泽坪. 厢式货车尾部非光滑表面导流板减阻效果研究[J]. 汽车工程, 2016, 38(7): 815-821.
Yang Xiao-long, Zou Hong-wei, Zhang Ze-ping. A study on the drag reduction effects of rear deflector with non-smooth surface for a cargo van[J]. Automotive Engineering, 2016, 38(7): 815-821.
20 Karbon K J, Longman S E. Automobile exterior water flow analysis using CFD and wind tunnel visualization[C]∥ SAE Technical Paper, 1998-02-23.
21 Philip G A, Bradley D. Simulation of rear glass and body side vehicle soiling by road sprays[J]. SAE International Journal of Passenger Cars Mechanical Systems, 2011, 4(1): 184-196.
22 辛俐, 高炳钊, 胡兴军, 等. 基于格子玻尔兹曼方法的侧窗水相分析与控制[J]. 哈尔滨工业大学学报, 2020, 52(1): 141-147.
Xin Li, Gao Bing-zhao, Hu Xing-jun, et al. Analysis and control of water phase of side window based on Boltzmann method[J]. Journal of Harbin Institute of Technology, 2020, 52(1): 141-147.
23 Bannister M. Drag and dirt deposition mechanisms of external rear view mirrors and techniques used for optimisation[J]. SAE Transactions, 2000, 109(6): 659-674.
[1] 陈鑫,王宁,沈传亮,冯晓,杨昌海. 后视镜造型对前侧窗气动噪声的影响[J]. 吉林大学学报(工学版), 2020, 50(2): 426-436.
[2] 辛俐,兰巍,刘江,万沁林,郭鹏,胡兴军,肖阳. 汽车涉水车身表面污染仿真及控制[J]. 吉林大学学报(工学版), 2019, 49(6): 1786-1794.
[3] 胡兴军,惠政,郭鹏,张扬辉,张靖龙,王靖宇,刘飞. 基于流固耦合的汽车气动特性[J]. 吉林大学学报(工学版), 2019, 49(5): 1414-1419.
[4] 王靖宇, 于旭涛, 胡兴军, 郭鹏, 辛俐, 郭峰, 张扬辉. 汽车外后视镜流致振特性及其流动机理[J]. 吉林大学学报(工学版), 2017, 47(6): 1669-1676.
[5] 李明达, 隗海林, 门玉琢, 包翠竹. 复杂底部结构下的重型载货汽车气动阻力[J]. 吉林大学学报(工学版), 2017, 47(3): 731-736.
[6] 韩飞, 张素民, 刘嘉沂. 基于眼椭圆的驾驶员后视镜视野盲区概率分布估计[J]. 吉林大学学报(工学版), 2013, 43(增刊1): 521-525.
[7] 胡兴军, 杨博, 郭鹏, 王靖宇, 杨洋, 安阳. 基于底部隔板的厢式货车的气动减阻[J]. 吉林大学学报(工学版), 2011, 41(增刊2): 108-113.
[8] 张英朝, 韦甘, 张喆. 不同尾翼两厢轿车的气动特性数值模拟[J]. 吉林大学学报(工学版), 2011, 41(01): 1-0005.
[9] 张英朝, 张喆, 李杰. 基于计算流体力学的虚拟风洞试验[J]. 吉林大学学报(工学版), 2010, 40(增刊): 90-0094.
[10] 杨博,胡兴军,王夫亮. 轻型客车侧窗区域气动噪声的数值模拟与验证[J]. 吉林大学学报(工学版), 2010, 40(04): 915-0919.
[11] 张英朝,李杰,张喆,胡兴军. 汽车风洞试验段尺寸参数对试验的影响[J]. 吉林大学学报(工学版), 2010, 40(02): 346-0350.
[12] 胡兴军;张英朝;李胜;林有志;王加雪;杨永柏 . 基于微分雷诺应力湍流模型的车辆气动特性的数值模拟[J]. 吉林大学学报(工学版), 2008, 38(03): 504-0507.
[13] 贺宝琴,吴允柱,傅立敏 . 汽车外形对智能车辆队列行驶气动特性的影响[J]. 吉林大学学报(工学版), 2008, 38(01): 7-011.
[14] 王靖宇,胡兴军,田华,张英朝,吴长鹏 . 导流罩对轻型厢式货车气动特性影响的数值模拟[J]. 吉林大学学报(工学版), 2008, 38(01): 12-016.
[15] 杨永柏;王靖宇;胡兴军 . 皮卡车外流场的数值模拟[J]. 吉林大学学报(工学版), 2007, 37(06): 1236-1241.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!