吉林大学学报(工学版) ›› 2021, Vol. 51 ›› Issue (6): 1990-1996.doi: 10.13229/j.cnki.jdxbgxb20200659

• 车辆工程·机械工程 • 上一篇    

基于改进量子遗传算法的超声电机模糊PID控制

冯建鑫(),王强,王雅雷,胥彪   

  1. 南京航空航天大学 航天学院,南京 210016
  • 收稿日期:2020-08-27 出版日期:2021-11-01 发布日期:2021-11-15
  • 作者简介:冯建鑫(1982-),男,副研究员,博士. 研究方向:鲁棒滤波与数据融合,伺服控制.E-mail:fengjx774@163.com
  • 基金资助:
    国家自然科学基金项目(61603183);南京航空航天大学研究生创新基地(实验室)开放基金项目(kfjj20201502)

Fuzzy PID control of ultrasonic motor based on improved quantum genetic algorithm

Jian-xin FENG(),Qiang WANG,Ya-lei WANG,Biao XU   

  1. Academy of Astronautics,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China
  • Received:2020-08-27 Online:2021-11-01 Published:2021-11-15

摘要:

针对超声电机非线性、时变性的特点,设计了模糊自整定PID控制器,并利用量子遗传算法对模糊自整定PID控制器参数进行优化,以提高系统的动态性能和适应性。针对传统量子遗传算法的不足,对编码方式、种群初始化、量子旋转门、量子变异以及增加量子灾变5个方面进行改进。仿真结果表明:改进量子遗传算法改善了传统量子遗传算法容易产生种群早熟的问题,提高了算法收敛性能。同时,基于改进量子遗传算法的模糊自整定PID控制器与经典的模糊自整定PID控制器相比,明显提高了超声电机系统的动态和稳态性能。

关键词: 控制理论与控制工程, 超声电机, 模糊PID控制, 改进量子遗传算法

Abstract:

Aiming at the problem of the nonlinear and time-varying characteristics of ultrasonic motor, a fuzzy self-tuning PID controller is designed, and the parameters of the fuzzy self-tuning PID controller are optimized by using an improved quantum genetic algorithm, which can improve the dynamic performance and adaptability of the system. In order to overcome the shortcomings of traditional quantum genetic algorithm, five improving measures are taken, including the coding mode, population initialization, quantum rotation gate, quantum mutation and adding quantum catastrophe. The simulation results show that the improved quantum genetic algorithm can improve the convergence performance and the premature population problem of traditional quantum genetic algorithm. At the same time, the fuzzy self-tuning PID controller based on the improved quantum genetic algorithm significantly improves the dynamic and stable state performance of the ultrasonic motor system compared with the classical fuzzy self-tuning PID controller.

Key words: control theory and control engineering, ultrasonic moto, fuzzy PID controller, improved quantum genetic algorithm

中图分类号: 

  • TP273

图1

超声电机控制系统结构"

图2

模糊自整定PID控制器结构"

图3

量子遗传算法流程图"

图4

改进量子遗传算法流程图"

图5

改进量子遗传算法参数传递流程图"

表1

两种优化算法初始状态比较"

算法

种群

规模

基因

位数

变异

概率

转角

初值

迭代
IQGA4050.050.04π200
QGA40600.050.04π200

图6

改进两种优化算法迭代过程比较"

表2

迭代优化结果对比"

算法优化参数名称性能指标
eecΔKPΔKIΔKD
IQGA0.02730.001 3700.016 606.720.003 3245.08
QGA0.02620.000 7320.003 675.820.002 1546.93

图7

仿真结果比较"

表3

三种控制器仿真结果比较"

控制系统

上升

时间/s

调节

时间/s

超调量/%

性能

指标

IQGA-FUZZY-PID0.00380.0059无超调45.08
FUZZY-PID0.00870.01396.1347.93
PID0.01170.019911.9350.34

图8

控制器参数变化"

1 张俊峰. 直线超声电机建模仿真及驱动控制器设计[D]. 深圳: 哈尔滨工业大学深圳研究生院, 2014.
Zhang Jun-feng. Modeling simulation and driving controller design of linear ultrasonic motor[D]. Shenzhen: Shenzhen Graduate School, Harbin Institute of Technology, 2014.
2 李霞, 陈维山, 谢涛. 双锥面齿自支撑轴系行波超声电机设计与有限元分析[J]. 吉林大学学报:工学版, 2008, 38(4): 940-945.
Li Xia, Chen Wei-shan, Xie Tao. Finite element analysis and experiment on travelling-wave ultrasonic motor with two-sided cone-shaped teeth and half-supported shafting[J]. Journal of Jilin University(Engineering and Technology Edition), 2008, 38(4): 940-945.
3 Wang Rui-qi, Li Ke, Cui Na-xin, et al. A new PID-type fuzzy neural network controller based on genetic algorithm with improved smith predictor[C]∥Proceedings of Joint 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference, Shanghai, China, 2009:5708-5713.
4 黄文文, 宋璐, 史敬灼. 超声波电机P型迭代学习转速控制[J]. 微电机, 2019, 52(6): 78-82.
Huang Wen-wen, Song Lu, Shi Jing-zhuo. P-type iterative learning speed control of ultrasonic motor[J]. Micromotors, 2019, 52(6): 78-82.
5 贺红林, 朱华, 赵淳生. 超声电机基于模糊PI技术的位置控制[J]. 机械科学与技术, 2006,25(5):603-607.
He Hong-lin, Zhu Hua, Zhao Chun-sheng. Position control of an ultrasonic motor using fuzzy PI technique[J]. Mechanical Science and Technology for Aerospace Engineering, 2006,25(5):603-607.
6 郑春娇, 朱延枫. 基于模糊PID的超声电机控制[J]. 辽宁工业大学学报:自然科学版, 2011, 31(2): 95-98.
Zhen Chun-jiao, Zhu Yan-feng. Control of ultrasonic motor based on fuzzy PID[J]. Journal of Liaoning University of Technology(Natural Science Edition), 2011, 31(2): 95-98.
7 孙晓明. 量子计算若干前沿问题综述[J]. 中国科学: 信息科学, 2016, 46(8): 982-1002.
Sun Xiao-ming. A survey of some frontier problems in quantum computing[J]. Scientia Sinica(Informationis), 2016, 46(8): 982-1002.
8 李静, 余春贤. 基于模糊与PID的车辆底盘集成控制系统[J]. 吉林大学学报:工学版, 2013,43():509-513.
Li Jing, Yu Chun-xian. Vehicle chassis integrated control system based on fuzzy and PID[J]. Journal of Jilin University(Engineering and Technology Edition), 2013,43(Sup.1):509-513.
9 陈垚彤. 基于优化问题的量子遗传算法研究[D]. 成都: 电子科技大学计算机科学与工程学院, 2019.
Chen Yao-tong. Research on quantum genetic algorithm based on timization problems[D]. Chengdu: School of Computer Science and Engineering, University of Electronic Science and Technology of China, 2019.
10 李士勇, 李盼池, 袁丽英. 量子遗传算法及在模糊控制器参数优化中的应用[J]. 系统工程与电子技术, 2007, 29(7): 1134-1138.
Li Shi-yong, Li Pan-chi, Yuan Li-ying. Quantum genetic algorithm with application in fuzzy controller parameter optimization[J]. Systems Engineering and Electronics, 2007, 29(7): 1134-1138.
11 王卫星. 基于改进鸡群算法的模糊PID控制器设计[J]. 自动化技术与应用, 2019, 38(9): 1-5.
Wang Wei-xing. Design of fuzzy PID controller based on improved chicken swarm algorithm[J]. Techniques of Automation and Applications, 2019, 38(9):1-5.
12 刘玉可, 史敬灼. 基于简化模糊规则的超声波电机模糊PI转速控制[J]. 电机技术, 2019,39(6): 16-19, 43.
Liu Yu-ke, Shi Jing-zhuo. Fuzzy PI speed control of the ultrasonic motor based upon simplified fussy rules[J]. Electrical Machinery Technology, 2019,39(6):16-19, 43.
[1] 马彦,黄健飞,赵海艳. 基于车间通信的车辆编队控制方法设计[J]. 吉林大学学报(工学版), 2020, 50(2): 711-718.
[2] 张茹斌, 占礼葵, 彭伟, 孙少明, 刘骏富, 任雷. 心肺功能评估训练系统的恒功率控制[J]. 吉林大学学报(工学版), 2018, 48(4): 1184-1190.
[3] 邓丽飞, 石要武, 朱兰香, 于丁力. SI发动机闭环系统故障检测[J]. 吉林大学学报(工学版), 2017, 47(2): 577-582.
[4] 彭贝, 高宇, 冯培恩, 邱清盈. 液压挖掘机回转启动过程节能技术[J]. 吉林大学学报(工学版), 2016, 46(6): 1912-1921.
[5] 靳立强, 刘刚, 陈鹏飞. 汽车电子稳定控制系统的分层控制策略及试验[J]. 吉林大学学报(工学版), 2016, 46(6): 1765-1771.
[6] 刘晓峰,刘昕晖,王龙山,谢新华,陈晋市. 基于模糊PID控制的大型履带起重机双马达速度同步控制[J]. 吉林大学学报(工学版), 2011, 41(03): 659-664.
[7] 李向瑜,高振海,袁昌碧,谯艳娟 . 汽车巡航控制系统的环境评估[J]. 吉林大学学报(工学版), 2008, 38(增刊): 28-0031.
[8] 李霞,,陈维山,谢涛 . 双锥面齿自支撑轴系行波超声电机设计与有限元分析[J]. 吉林大学学报(工学版), 2008, 38(04): 940-945.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!