吉林大学学报(工学版) ›› 2021, Vol. 51 ›› Issue (6): 1997-2006.doi: 10.13229/j.cnki.jdxbgxb20200848

• 车辆工程·机械工程 • 上一篇    

机器学习风速预测及新能源抽油机风功率控制

张春友1,2(),王亮1(),李宏1,武桐言1,李岩3   

  1. 1.北京航空航天大学 自动化科学与电气工程学院,北京 100191
    2.内蒙古民族大学 工学院,内蒙古 通辽 028000
    3.内蒙古电子信息职业技术学院 电子与自动化学院,呼和浩特 010070
  • 收稿日期:2020-11-03 出版日期:2021-11-01 发布日期:2021-11-15
  • 通讯作者: 王亮 E-mail:zcy19801204@126.com;wangliang@buaa.edu.cn
  • 作者简介:张春友(1980-),男,副教授,博士. 研究方向:新能源利用技术. E-mail:zcy19801204@126.com
  • 基金资助:
    国家自然科学基金项目(51865046);内蒙古自治区科技成果转化引导项目(2020CG0085);内蒙古科技英才支持计划项目(NJYT-19-B15)

Wind speed prediction based on machine learning and new energy pumping unit wind power control

Chun-you ZHANG1,2(),Liang WANG1(),Hong LI1,Tong-yan WU1,Yan LI3   

  1. 1.School of Automation Science and Electrical Engineering,Beihang University,Beijing 100191,China
    2.College of Engineering,Inner Mongolia University for the Nationalities,Tongliao 028000,China
    3.College of Electronics and Automation,Inner Mongolia Electronic Information Vocational Technical College,Hohhot 010070,China
  • Received:2020-11-03 Online:2021-11-01 Published:2021-11-15
  • Contact: Liang WANG E-mail:zcy19801204@126.com;wangliang@buaa.edu.cn

摘要:

为了提高新能源抽油机的节能效果,提出了风力机最大风能跟踪控制策略。通过支持向量回归(SVR)方法估计作用到风轮平面的有效风速,利用粒子群算法对估计模型中的关键参数进行优化,以提高风速估计的精度。在转速反馈控制环节,设计了反馈线性化滑模控制器,通过与PID控制器进行对比研究,验证了所设计新型控制器具有快速性、抗扰动等特点。本文提出的最大风功率跟踪控制策略能够满足新能源抽油机的节能要求。

关键词: 风能利用, 新能源抽油机, 支持向量回归, 反馈线性化, 功率跟踪

Abstract:

This paper takes the new energy pumping unit as the research object. In order to improve the ability of new energy pumping unit,first, the maximum wind energy tracking control strategy of the wind turbine is studied, and a wind speed estimation method-support vector regression is presented. Then, the key parameters in the estimation model are optimized by particle swarm optimization. Finally, a feedback linearized sliding mode controller is designed for speed feedback control. By comparing with PID controller, it is verified that the new controller has the characteristics of rapidity and anti-disturbance. Therefore, the maximum wind power tracking control strategy proposed in this paper meets the energy-saving requirements of new energy pumping units.

Key words: wind energy, new energy pumping unit, support vector regression(SVR), feedback linearization, power tracking

中图分类号: 

  • TK89

图1

抽油机结构简图"

图2

风力机-电机混合传动系统结构简图"

图3

风能利用系数与叶尖速比的关系曲线"

图4

风力机特性曲线"

图5

基于粒子群算法的参数优化流程图"

图6

适应度曲线"

图7

C=142.847,δ2=187.851在实验样本上的回归结果"

图8

风速阶跃信号和管路压力变化信号"

图9

风轮转速响应对比"

图10

风力机捕获风功率对比"

图11

风力机-泵系统输出功率对比"

图12

风能利用系数对比"

图13

风速扰动信号"

图14

转速稳定性对比"

1 Zhang Chun-you, Wang Liang, Li Hong. Experiments and simulation on a late-model wind-motor hybrid pumping unit[J]. Energies, 2020, 13(4):No.994.
2 Zhang Chun-you, Wang Liang, Li Hong. Optimization method based on process control of a new-type hydraulic-motor hybrid beam pumping unit[J]. Measurement, 2020, 158: No.107716.
3 程启明,程尹曼,汪明媚,等. 风力发电系统中最大功率点跟踪方法的综述[J].华东电力, 2010, 38(9): 1393-1399.
Cheng Qi-ming, Cheng Yin-man, Wang Ming-mei, et al. Review on the method of tracking the maximum power point in wind power generation system[J]. East China Electric Power, 2010, 38(9): 1393-1399.
4 Chen Hu, Qian Chun-zhen, Ma Jian-guang, et al. Study on maximum power point tracking strategy for direct-driven permanent magnet synchronous generating system[J]. Power System Protection and Control, 2012, 40(22): 83-87, 93.
5 张秀玲, 谭光忠, 张少宇, 等. 采用模糊推理最优梯度法的风力发电系统最大功率点跟踪研究[J]. 中国电机工程学报, 2011, 31(2): 119-123.
Zhang Xiu-ling, Tan Guang-zhong, Zhang Shao-yu, et al. Research on maximum power point tracking of wind power generation system based on fuzzy inference optimal gradient[J]. Proceedings of the CSEE, 2011,31(2):119-123.
6 Soufi Y, Kahla S, Bechouat M. Feedback linearization control based particle swarm optimization for maximum power point tracking of wind turbine equipped by PMSG connected to the grid[J]. International Journal of Hydrogen Energy, 2016, 41(45): 20950-20955.
7 Femia N, Petrone G, Spagnuolo G, et al. Optimization of perturb and observe maximum power point tracking method[J].IEEE Transactions on Power Electronics, 2005, 20(4): 963-973.
8 Barakati S M, Kazerani M, Aplevich J D. Maximum power tracking control for a wind turbine system including a matrix converter[J]. IEEE Transactions on Energy Conversion, 2009, 24(3): 705-713.
9 Sarvi M, Abdi S H, Ahmadi S. A new method for rapid maximum power point tracking of PMSG wind generator using PSO_fuzzy logic[J]. Technical Journal of Engineering and Applied Sciences, 2013, 3(17): 1984-1995.
10 Liu Fang-rui, Duan Shan-xu, Liu Fei, et al. A variable step size INC MPPT method for PV systems[J]. IEEE Transactions on Industrial Electronics, 2008, 55(7): 2622-2628.
11 赵骞, 邵一川, 姚兴佳, 等. 风电机组基于最优跟踪路径的改进型 MPPT 控制[J].中国电机工程学报,2020,40(1):282-289, 394.
Zhao Qian, Shao Yi-chuan, Yao Xing-jia, et al. Improved MPPT Control of Turbine Based on Optimal Tracking Path[J]. Proceedings of the CSEE, 2020, 40(1): 282-289, 394.
12 李飞龙, 林勇刚, 李伟, 等. 风能静液压传动控制技术[J].吉林大学学报:工学版, 2014, 44(6): 1664-1668.
Li Fei-long, Lin Yong-gang, Li Wei, et al. Energy hydraulic transmission system of wind turbine[J]. Journal of Jilin University (Engineering and Technology Edition), 2014, 44(6): 1664-1668.
13 韩利坤. 基于能量液压传递的风力机“变速恒频”技术研究[D]. 杭州:浙江大学机械工程学院, 2012.
Han Li-kun. Research on the“variable speed and constant fre-quency”technology for wind turbines based on the energy hydraulic transmission[D]. Hangzhou: School of Mechanical Engineering, Zhejiang University, 2012.
14 艾超.液压型风力发电机组转速控制和功率控制研究[D]. 秦皇岛:燕山大学机械工程学院, 2012.
Ai Chao. Research on the rotating speed and power control over hydraulic type wind power generators [D]. Qinhuangdao: School of Mechanical Engineering, Yanshan University, 2012.
15 Bhowmik S, Spee R, Enslin J H R. Performance optimization for doubly fed wind power generation systems[J]. IEEE Transactions on Industry Applications, 1999, 35(4): 949-958.
16 Tan K, Islam S. Optimal control strategies in energy conversion of PMSG wind turbine system without mechanical sensors[J]. IEEE Transactions on Energy Convers, 2004, 19(2): 392-399.
17 Li Hui, Shi K L, Mclaren P G. Neural network based sensorless maximum wind energy capture with compensated power coefficien[J]. IEEE Transactionson Industry Applications, 2005, 41(6): 1548-1556.
18 Jena D, Rajendran S. A review of estimation of effective wind speed based control of wind turbines[J]. Renewable and Sustainable Energy Reviews, 2015, 43: 1046-1062.
19 刘昕晖, 李春爽, 陈琳, 等. 游梁式抽油机节能技术综述[J]. 吉林大学学报: 工学版, 2021, 51(1): 1-26.
Liu Xin-hui, Li Chun-shuang, Chen Lin, et al. Review of energy saving technologies for beam pumping units[J]. Journal of Jilin University (Engineering and Technology Edition), 2021, 51(1): 1-26.
20 王毅,朱晓荣,赵书强. 风力发电系统的建模与仿真[M].北京: 中国水利水电出版社,2015.
21 李晓林.变转速液压泵控马达系统的恒转速控制研究[D]. 北京: 北京理工大学自动化学院,2014.
Li Xiao-lin. Research on constant speed control of variable-speed hydraulic pump-controlled motor system[D]. Automation Academy, Beijing Institute of Technology, 2014.
22 Wang Li-hua, Zhang Chun-you. Research on energy saving principle of pumping unit driven by wind turbine[C]∥Proceedings of 2019 IEEE International Conference on Mechatronics and Automation, Tianjin, China, 2019: 21-26.
[1] 张斌,程国赞,洪昊岑,赵春晓,白大鹏,杨华勇. 基于SVR的轴向柱塞泵配流盘三角槽结构优化[J]. 吉林大学学报(工学版), 2021, 51(4): 1213-1221.
[2] 杨兆军, 杨川贵, 陈菲, 郝庆波, 郑志同, 王松. 基于PSO算法和SVR模型的加工中心可靠性模型参数估计[J]. 吉林大学学报(工学版), 2015, 45(3): 829-836.
[3] 许洪国, 彭涛, 刘宏飞, 许言. 半挂汽车转向稳定性反馈线性化控制[J]. 吉林大学学报(工学版), 2012, 42(02): 272-278.
[4] 王甦菁1,周春光1,张娜1,李建朋2,张利彪1. 基于形状和纹理特征的人脸年龄估计方法[J]. 吉林大学学报(工学版), 2011, 41(05): 1383-1387.
[5] 张永明, 陈烈, 齐维贵. 基于支持向量区间回归的供热负荷概率预报[J]. 吉林大学学报(工学版), 2010, 40(06): 1693-1697.
[6] 于忠党,,王龙山,陈向伟. 基于支持向量回归的零件直线边缘亚像素图像检测[J]. 吉林大学学报(工学版), 2006, 36(03): 371-0375.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!