吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (1): 1-24.doi: 10.13229/j.cnki.jdxbgxb20210047

• 综述 •    

钒氧化还原流电池技术综述

曲大为1(),杨帆1,范鲁艳1,冯啸宇2,马家义1()   

  1. 1.吉林大学 汽车工程学院,长春 130022
    2.中鼎(吉林)智能制造工程有限公司,长春 130062
  • 收稿日期:2021-01-19 出版日期:2022-01-01 发布日期:2022-01-14
  • 通讯作者: 马家义 E-mail:qudawei@jlu.edu.cn;majiayi@jlu.edu.cn
  • 作者简介:曲大为(1983-)男,副教授,博士生导师. 研究方向:电储能技术. E-mail:qudawei@jlu.edu.cn

Review of vanadium redox flow battery technology

Da-wei QU1(),Fan YANG1,Lu-yan FAN1,Xiao-yu FENG2,Jia-yi MA1()   

  1. 1.College of Automotive Engineering,Jilin University,Changchun 130022,China
    2.Zhong Ding Intelligent Manufacturing Engineering Co. ,Ltd. ,Changchun 130062,China
  • Received:2021-01-19 Online:2022-01-01 Published:2022-01-14
  • Contact: Jia-yi MA E-mail:qudawei@jlu.edu.cn;majiayi@jlu.edu.cn

摘要:

钒氧化还原流电池(VRFB)具有响应速度快、储能量巨大、成本低、效率高、使用寿命长和低污染等特点,在大型储能系统领域有着广泛的应用潜力。虽然钒氧化还原流电池已被商用,但是其能量密度与效率仍然受电极活性、温度稳定性、膜内交叉污染和极化损失等因素的限制。针对当前钒氧化还原流电池领域的研究热点,从电池的电极、电解液、隔膜以及双极板流场4个方面分别展开综述,阐述VRFB技术的工作原理,介绍VRFB不同组件及其最新的研究现状,总结了限制VRFB进一步发展的技术因素,探讨这些限制的解决方法,并对VRFB技术今后的发展进行了展望与分析。

关键词: 钒氧化还原流电池, 储能设备, 可再生能源, 能量效率, 能量损失

Abstract:

Vanadium redox flow battery (VRFB) has a brilliant future in the field of large energy storage system (EES) due to its characteristics including fast response speed, large energy storage capacity, low cost, high efficiency, long service life and low pollution. Although vanadium redox flow batteries have been widely used in commercial applications, their energy density and efficiency are limited by electrode activity, temperature stability, cross contamination, and voltage loss. This review, which includes the four aspects of electrode, electrolyte, membrane, and bipolar plate on VRFB, mainly illustrates the working principle of VRFB technology, while introducing the different components of VRFB and their latest research status, summarizing the limitations of current VRFBs, and discussing the solutions to these limitations, so as to highlight the development direction of VRFB technology.

Key words: vanadium redox flow battery, energy storage system, renewable energy, energy efficiency, energy losses

中图分类号: 

  • TK02

图1

钒氧化还原流电池单体内部结构"

表1

钒氧化还原流电池的优缺点"

优 点缺 点
1.阴阳极电解液成分均为钒元素,电解液通过膜造成的交叉污染程度很小。1.为了防止电解液发生沉淀,需要将电池温度环境控制在10~40 ℃范围内,稳定工作温度范围较窄。
2.即使存在小程度的交叉污染,可对阴阳极电解液充电,来平衡正负电解液,使得浓度达到原先的设定范围。2.V5+具有很强的氧化性,将恶化离子交换膜,阳极材料发生腐蚀;而V2+极易被空气中氧气氧化,需要对阴极电解液通入保护气与氧隔绝,增加了成本。
3.电池的效率较高,可达到70%~90%,随着将来材料(用于电极、离子交换膜、双极板等)的发展,VRFB的效率将会更高。3.由于析氢副反应的存在,钒氧化还原流电池的充电过程耗能增加;由于吸氧副反应的存在,电池的双极板和电极会受到腐蚀,缩短电池的寿命。
4.相比于其他氧化还原流电池,VRFB在快速的充电循环中,副反应产生的程度小,产生氢气和氧气较少。4.VRFB在高电流密度的工作状态下会发生严重的极化,进一步降低系统的能量密度。
5.电解液在泵的推动下,在管路中循环利用,电解液具有可回收的特点。

5.电池系统中各组件之间(串联电堆、电解液管道)的密封性不足,会导致电解液的泄露,造成正负极电解液容量的不平衡。

6. 无论是运行还是待机的工况下,没有任何污染物以及CO2等温室气体的排放。

图2

钒氧化还原电池工作原理示意图"

表2

酸处理的电极在不同工况下的电池效率[39]"

电流密度

/(mA·cm-2

工作循

环数

电池效率/%
库仑效率电压效率能量效率
10178.391.171.3
5083.291.576.1
10080.391.673.6
20183.686.372.2
5083.986.472.5
10085.485.873.3
30186.581.870.7
5086.381.970.7
10086.681.870.8
40187.672.563.5
5090.772.165.4
10087.671.462.5

表3

电极优化方法的比较"

电极优化方法类 型优 点不 足
热处理化学方法操作容易、成本较低反应较为剧烈,不利于控制
酸处理化学方法反应程度较为温和,易于控制防腐要求较高
金属粒子修饰化学方法改性效果最好,电极效率提升明显金属催化剂的成本较高,制备工艺较复杂
电极压缩物理方法操作容易、成本较低不可过度压缩,优化能力有限

图3

电极在不同压缩率下的放电容量和不同压缩率 电极的内阻"

图4

不同电解液温度的库仑效率、电压效率和能量效率[71]"

图5

不同电解液体积与空气-电解液界面面积的比值对V2+氧化反应速率的影响[87]"

表4

离子交换膜的比较"

隔膜类型优 点缺 点代表膜材质
阳离子交换膜良好的化学稳定性、质子传输能力强离子选择性较差全氟磺酸膜95?97
阴离子交换膜离子选择性强,防止钒离子的交叉污染电导率较低,内阻大季铵盐功能化膜101107
两性离子交换膜

具备阳离子、阴离子交换膜的优点,离子

传输能力和离子选择性方面较好

膜制造工艺复杂,成本较高磺化聚酰亚胺膜108

表5

VRFB阴阳极电解液自放电副反应方程式"

电极电解液中离子反应方程式
阳 极阳极离子通过膜侵入阴极电解液VO2+VO2++2V2++4H+3V3++2H2O
VO2+VO2++V2++2H+2V3++H2O
VO2+VO2++V3+VO2+
阴 极阴极离子通过膜侵入阳电解液V2+V2++2VO2++2H+2VO2++H2O
V3+V3++VO2+2VO2+
V2+V2++VO2++2H+2V3++H2O

图6

双极板流道形状"

图7

不同流道的电池性能与电流密度之间的关系[131]"

图8

优化后的流场结构[137,138]"

1 Bhattacharjee A, Saha H. Development of an efficient thermal management system for vanadium redox flow battery under different charge-discharge conditions[J]. Appl Energy, 2018, 230: 1182-1192.
2 Duan Z N, Qu Z G, Wang Q, et al. Structural modification of vanadium redox flow battery with high electrochemical corrosion resistance[J]. Appl Energy, 2019, 250: 1632-1640.
3 林立乾, 米增强, 贾雨龙, 等. 面向电力市场的分布式储能聚合参与电网调峰[J]. 储能科学与技术, 2019, 8(2): 276-283.
Lin Li-qian, Mi Zeng-qiang, Jia Yu-long, et al. Distributed energy storage aggregation for power grid peak shaving in a power market[J]. Energy Storage Science and Technology, 2019, 8(2): 276-283.
4 Diaz-Gonzalez F, Sumper A, Gomis-Bellmunt O, et al. A review of energy storage technologies for wind power applications[J]. Renewable and Sustainable Energy Reviews, 2012, 16(4): 2154-2171.
5 Skyllas-Kazacos M, Chakrabarti M H, Hajimolana S A, et al. Progress in flow battery research and development[J]. Journal of the Electrochemical Society, 2011, 158(8): 55-79.
6 苏俊臣. 全钒液流电池用氮磷共掺杂石墨毡电极的研究[D]. 北京:清华大学化学学院, 2018.
Su Jun-chen. Research on nitrogen and phosphorus co-doped graphite felt electrodes for vanadium flow battery[D]. Beijing: College of Chemistry, Tsinghua University, 2018.
7 吴雨森. 全钒液流电池SOC及能量管理系统研究[D]. 合肥:合肥工业大学电气与自动化工程学院, 2019.
Wu Yu-sen. Research on SOC estimation and energy management system of all vanadium redox flow battery[D]. Heifei:School of Electrical Engineering and Automation, Heifei University of Technology, 2019.
8 Aramendia I, Fernandez-Gamiz U, Martinez-San-Vicente A, et al. Vanadium redox flow batteries: a review oriented to fluid-dynamic optimization[J]. Energies, 2021, 14(1): 176.
9 Dehghani-Sanij A R, Tharumalingam E, Dusseault M B, et al. Study of energy storage systems and environmental challenges of batteries[J]. Renewable and Sustainable Energy Reviews, 2019, 104: 192-208.
10 Wang T, Fu J H, Zheng M L, et al. Dynamic control strategy for the electrolyte flow rate of vanadium redox flow batteries [J]. Appl Energy, 2018, 227: 613-623.
11 夏力行, 刘昊, 刘琳, 等. 有机氧化还原液流电池的研究进展[J]. 电化学, 2018, 24(5): 466-487.
Xia Li-xing, Liu Hao, Liu Lin, et al. Recent progresses in organic redox flow batteries[J]. Journal of Electrochemistry, 2018, 24(5): 466-487.
12 Chen Hai-sheng, Tan Chun-qing, Yang Wei, et al. Progress in electrical energy storage system: a critical review[J]. Progress in Natural Science, 2009, 19(3): 291-312.
13 纪燕男, 徐谦, 秦立宇, 等.液流电池技术评价指标的发展及其应用[J]. 江苏大学学报: 自然科学版, 2019, 40(4): 404-410.
Ji Yan-nan, Xu Qian, Qin Li-yu, et al. Development and applications of technological evaluation criteria for redox flow batteries[J]. Journal of Jiangsu University(Natural Science Edition), 2019, 40(4): 404-410.
14 You Dong-jiang, Zhang Hua-min, Sun Chen-xi, et al. Simulation of the self-discharge process in vanadium redox flow battery[J]. Journal of Power Sources, 2011, 196(3): 1578-1585.
15 Jung S, Choi B, Park S, et al. Computational study of effects of contact resistance on a large‐scale vanadium redox flow battery stack[J]. International Journal of Energy Research, 2019, 43(6): 2343-2360.
16 Kapoor M, Gautam R K, Ramani V K, et al. Predicting operational capacity of redox flow battery using a generalized empirical correlation derived from dimensional analysis[J]. Chemical Engineering Journal, 2019, 379: No.122300.
17 Kim K J, Park M S, Kim Y J, et al. A technology review of electrodes and reaction mechanisms in vanadium redox flow batteries[J]. Journal of Materials Chemistry A, 2015, 3(33): 16913-16933.
18 赵峰鸣, 闻刚, 孔丽瑶, 等. 氮化钛纳米管作为钒电池负极对Ⅴ(Ⅱ)/Ⅴ(Ⅲ)的电化学性能[J]. 无机化学学报, 2017, 33(3): 501-508.
Zhao Feng-ming, Wen Gang, Kong Li-yao, et al. Electrochemical performance of titanium nitride nanotubes as negative electrode in a static vanadium battery towards V(Ⅱ) /V(Ⅲ) redox couple[J]. Chinese Journal of Inorganic Chemistry, 2017, 33(3): 501-508.
19 Knehr K W, Kumbur E C. Open circuit voltage of vanadium redox flow batteries: discrepancy between models and experiments[J]. Electrochemistry Communications, 2011, 13(4): 342-345.
20 Liu Bo, Zhang Yu-xia, Jiang Yun-hu, et al. High performance acid-base composite membranes from sulfonated polysulfone containing graphitic carbon nitride nanosheets for vanadium redox flow battery[J]. Journal of Membrane Science, 2019, 591: No.117332.
21 Wang Wei, Luo Qing-tao, Li Bin, et al. Recent progress in redox flow battery research and development[J]. Advanced Functional Materials, 2013, 23(8): 970-986.
22 Flox C, Skoumal M, Rubio-Garcia J, et al. Strategies for enhancing electrochemical activity of carbon-based electrodes for all-vanadium redox flow batteries[J]. Appl Energy, 2013, 109: 344-351.
23 Hu Guang-jian, Jing Ming-hua, Wang Da-wei, et al. A gradient bi-functional graphene-based modified electrode for vanadium redox flow batteries[J]. Energy Storage Mater, 2018, 13: 66-71.
24 Cheng Di-xuan, Li Yue-han, Zhang Jin-liang, et al. Recent advances in electrospun carbon fiber electrode for vanadium redox flow battery: properties, structures, and perspectives[J]. Carbon, 2020, 170: 527-542.
25 Zhou X L, Zeng Y K, Zhu X B, et al. A high-performance dual-scale porous electrode for vanadium redox flow batteries[J]. Journal of Power Sources, 2016, 325: 329-336.
26 Park S E, Yang S Y, Kim K J. Boron-functionalized carbon felt electrode for enhancing the electrochemical performance of vanadium redox flow batteries[J]. Applied Surface Science, 2021, 546: No.148941.
27 Aaron D S, Liu Q, Tang Z, et al. Dramatic performance gains in vanadium redox flow batteries through modified cell architecture[J]. Journal of Power Sources, 2012, 206: 450-453.
28 Youn C, Song S A, Kim K, et al. Effect of nitrogen functionalization of graphite felt electrode by ultrasonication on the electrochemical performance of vanadium redox flow battery[J]. Materials Chemistry and Physics, 2019, 237: No. 121873.
29 Xu Ze-yu, Xiao Wei, Zhang Kai-yue, et al. An advanced integrated electrode with micron- and nano-scale structures for vanadium redox flow battery[J]. Journal of Power Sources, 2020, 450: No.227686.
30 马奇会. 全钒氧化还原液流电池石墨毡电极的改性研究[D]. 哈尔滨:哈尔滨工业大学海洋科学与技术学院, 2015.
Ma Qi-hui. Modification of graphite felt electrodes for vanadium redox flow battery[D]. Harbin: School of Marine Science and Technology, Harbin Institute of Technology, 2015.
31 Wu Lu-tao, Shen Yi, Yu Li-hong, et al. Boosting vanadium flow battery performance by Nitrogen-doped carbon nanospheres electrocatalyst[J]. Nano Energy, 2016, 28: 19-28.
32 Hassan A, Tzedakis T. Enhancement of the electrochemical activity of a commercial graphite felt for vanadium redox flow battery (VRFB), by chemical treatment with acidic solution of K2Cr2O7[J]. Journal of Energy Storage, 2019, 26: No.100967.
33 Chen Jian-zhang, Liao Wei-yang, Wen-yan Hsieh, et al. All-vanadium redox flow batteries with graphite felt electrodes treated by atmospheric pressure plasma jets[J]. Journal of Power Sources, 2015, 274: 894-898.
34 Kim S C, Lim H, Kim H, et al. Nitrogen and oxygen dual-doping on carbon electrodes by urea thermolysis and its electrocatalytic significance for vanadium redox flow battery[J]. Electrochimica Acta, 2020, 348: No.136286.
35 Pezeshki A M, Clement J T, Veith G M, et al. High performance electrodes in vanadium redox flow batteries through oxygen-enriched thermal activation[J]. Journal of Power Sources, 2015, 294: 333-338.
36 Vazquez-Galvan J, Flox C, Jervis J R, et al. High-power nitrided TiO2 carbon felt as the negative electrode for all-vanadium redox flow batteries[J]. Carbon, 2019, 148: 91-104.
37 Kil D, Lee H J, Park S, et al. Synthesis of activated graphite felts using short-term ozone/heat treatment for vanadium redox flow batteries[J]. Journal of the Electrochemical Society, 2017, 164(13):3011-3017.
38 Sun B, Skyllas-Kazacos M. ChemInform abstract: chemical modification of graphite electrode materials for vanadium redox flow battery application. part 2. acid treatments[J]. Chem Inform, 1992, 23(49): 18.
39 Yue Lu, Li Wei-shan, Sun Feng-qiang, et al. Highly hydroxylated carbon fibres as electrode materials of all-vanadium redox flow battery[J]. Carbon, 2010, 48(11): 3079-3090.
40 杨春, 王树博, 谢晓峰, 等. 羟基自由基对全钒液流电池石墨毡电极的性能影响[J]. 化工学报, 2012, 63(): 188-193.
Yang Chun, Wang Shu-bo, Xie Xiao-feng, et al. Performance influence of hydroxyl radical on graphite felt electrode used in all vanadium redox flow battery[J]. CIESC Journal, 2012, 63(S1): 188-193.
41 Flox C, Skoumal M, Rubio-Garcia J, et al. Strategies for enhancing electrochemical activity of carbon-based electrodes for all-vanadium redox flow batteries[J]. Appl Energy, 2013, 109: 344-351.
42 Cheng Di-xuan, Li Yue-hua, Han Chao, et al. Endowing electrospun carbon fiber with excellent electrocatalytic properties towards VO2+/VO2+ redox reaction for vanadium redox flow battery by in situ iridium decoration[J]. Physicochemical and Engineering Aspects, 2020, 586: No.124137.
43 Wang W H, Wang X D. Investigation of Ir-modified carbon felt as the positive electrode of an all-vanadium redox flow battery[J]. Electrochimica Acta, 2007, 52(24): 6755-6762.
44 Huang R H, Sun C H, Tseng T M, et al. Investigation of active electrodes modified with platinum/multiwalled carbon nanotube for vanadium redox flow battery[J]. Journal of the Electrochemical Society, 2012, 159(10): 1579-1586.
45 Li Bin, Gu Meng, Nie Zi-min, et al. Bismuth nanoparticle decorating graphite felt as a high-performance electrode for an all-vanadium redox flow battery[J]. Nano Letters, 2013, 13(3): 1330-1335.
46 He Zhang-xing, Dai Lei, Liu Su-qin, et al. Mn3O4 anchored on carbon nanotubes as an electrode reaction catalyst of V(IV)/V(V) couple for vanadium redox flow batteries[J]. Electrochimica Acta, 2015, 176: 1434-1440.
47 Wu Xiao-xin, Xu Hong-feng, Lu Lu, et al. PbO2-modified graphite felt as the positive electrode for an all-vanadium redox flow battery[J]. Journal of Power Sources, 2014, 250: 274-278.
48 Shen Yang, Xu Hong-feng, Xu Peng-cheng, et al. Electrochemical catalytic activity of tungsten trioxide- modified graphite felt toward VO2+/VO2+ redox reaction[J]. Electrochimica Acta, 2014, 132: 37-41.
49 Vazquez-Galvan J, Flox C, Fàbrega Cristian, et al. Hydrogen-treated rutile TiO2 shell in graphite-core structure as a negative electrode for high-performance vanadium redox flow batteries[J]. Chemsuschem, 2017, 10(9): 2089-2098.
50 Wang Q, Qu Z G, Jiang Z Y, et al. Numerical study on vanadium redox flow battery performance with non-uniformly compressed electrode and serpentine flow field[J]. Applied Energy, 2018, 220: 106-116.
51 Lu Meng-yue, Yang Wei-wei, Bai Xiao-shuai, et al. Performance improvement of a vanadium redox flow battery with asymmetric electrode designs[J]. Electrochim Acta, 2019, 319: 210-226.
52 Park S K, Shim J, Yang J H, et al. The influence of compressed carbon felt electrodes on the performance of a vanadium redox flow battery[J]. Electrochim Acta, 2014, 116: 447-452.
53 Oh K, Won S, Ju H. Numerical study of the effects of carbon felt electrode compression in all-vanadium redox flow batteries[J]. Electrochimica Acta, 2015, 181: 13-23.
54 Sang J Y, Kim S, Kim D K. Optimization of local porosity in the electrode as an advanced channel for all-vanadium redox flow battery[J]. Energy, 2019, 172: 26-35.
55 Ghimire P C, Arjun B, Schweiss R, et al. A comprehensive study of electrode compression effects in all vanadium redox flow batteries including locally resolved measurements[J]. Applied Energy, 2018, 230: 974-982.
56 Skyllas-Kazacos M, Kazacos G, Poon G, et al. Recent advances with UNSW vanadium-based redox flow batteries[J]. International Journal of Energy Research, 2010, 34(2): 182-189.
57 Lourenssen K, Williams J, Ahmadpour F, et al. Vanadium redox flow batteries: a comprehensive review[J]. Journal of Energy Storage, 2019, 25: No.00844.
58 Lourenssen K, Williams J, Ahmadpour F, et al. Design, development, and testing of a low-concentration vanadium redox flow battery[J]. Journal of Electrochemical Energy Conversion and Storage, 2021, 18(1): 1-17.
59 Poli N, Schaffer M, Trovo A, et al. Novel electrolyte rebalancing method for vanadium redox flow batteries[J]. Chemical Engineering Journal, 2021, 405: No.126583.
60 Li W, Zaffou R, Sholvin C C, et al. Vanadium redox-flow-battery electrolyte preparation with reducing agents[J]. ECS Transactions, 2013, 53(7): 93-99.
61 Dassisti M, Cozzolino G, Chimienti M, et al. Sustainability of vanadium redox-flow batteries: benchmarking electrolyte synthesis procedures[J]. International Journal of Hydrogen Energy, 2016, 41(37): 16477-16488.
62 Ngamsai K, Arpornwichanop A. Analysis and measurement of the electrolyte imbalance in a vanadium redox flow battery[J]. Journal of Power Sources, 2015, 282: 534-543.
63 Chang Fang, Hu Chang-wei, Liu Xiao-jiang, et al. Coulter dispersant as positive electrolyte additive for the vanadium redox flow battery[J]. Electrochim Acta, 2012, 60: 334-338.
64 Choi C, Kim S, Kim R, et al. A review of vanadium electrolytes for vanadium redox flow batteries[J]. Renewable and Sustainable Energy Reviews, 2017, 69: 263-274.
65 Wen Yue-hua, Xu Yan, Cheng Jie, et al. Investigation on the stability of electrolyte in vanadium flow batteries[J]. Electrochimica Acta, 2013, 96: 268-273.
66 álvaro Cunha, Brito F P, Martins J, et al. Assessment of the use of vanadium redox flow batteries for energy storage and fast charging of electric vehicles in gas stations[J]. Energy, 2016, 115: 1478-1494.
67 El Hage R, Chauvet F, Biscans B, et al. Kinetic study of the dissolution of vanadyl sulfate and vanadium pentoxide in sulfuric acid aqueous solution[J]. Chemical Engineering Science, 2019, 199: 123-136.
68 Wang Ke, Zhang Yun Nong, Liu Le, et al. Broad temperature adaptability of vanadium redox flow battery-part 3: the effects of total vanadium concentration and sulfuric acid concentration[J]. Electrochim Acta, 2018, 259: 11-19.
69 Xiao Shui-bo, Yu Li-hong, Wu Lan-tao, et al. Broad temperature adaptability of vanadium redox flow battery-part 1: electrolyte research[J]. Electrochim Acta, 2016, 187: 525-534.
70 Skyllas K M. Thermal stability of concentrated v(v) electrolytes in the vanadium redox cell[J]. Journal of the Electrochemical Society, 1996, 143(4): L86-L88.
71 Yang Ya-dong, Zhang Yi-min, Liu Tao, et al. Improved broad temperature adaptability and energy density of vanadium redox flow battery based on sulfate-chloride mixed acid by optimizing the concentration of electrolyte[J]. Journal of Power Sources, 2019, 415: 62-68.
72 Yang Ya-dong, Zhang Yi-min, Tang Li, et al. Investigations on physicochemical properties and electrochemical performance of sulfate-chloride mixed acid electrolyte for vanadium redox flow battery[J]. Journal of Power Sources, 2019, 434: No.226719.
73 刘崇忠. 全钒液流电池电解液的研究[D]. 杭州:浙江工业大学化学工程学院, 2015.
Liu Chong-zhong. The research on the electrolyte of all vanadium redox flow battery[D]. Hangzhou: College of Chemical Engineering, Zhejiang University of Technology, 2015.
74 Wang Q H, Daoud W A. Temperature influence on the reaction kinetics of V(IV)/V(V) in methanesulfonic acid for all-vanadium redox flow battery[J]. Electrochimica Acta, 2016, 214: 11-18.
75 Kausar N, Mousa A, Skyllas-Kazacos M. The effect of additives on the high-temperature stability of the vanadium redox flow battery positive electrolytes[J]. ChemElectroChem, 2016, 3(2): 276-282.
76 Ding Cong, Ni Xiao, Li Xian-feng, et al. Effects of phosphate additives on the stability of positive electrolytes for vanadium flow batteries[J]. Electrochim Acta, 2015, 164: 307-314.
77 Roznyatovskaya N V, Roznyatovsky V A, Hohne C C, et al. The role of phosphate additive in stabilization of sulphuric-acid-based vanadium(V) electrolyte for all-vanadium redox-flow batteries[J]. Journal of Power Sources, 2017, 363: 234-243.
78 陈孝娥, 崔旭梅, 曾志勇, 等. NaCl作为添加剂对钒电池正极电解液性能的影响[J]. 电源技术, 2018, 42(6): 840-842.
Chen Xiao-e, Cui Xu-mei, Zeng Zhi-yong, et al. Effect of NaCl as additive for positive electrolyte on the properties of vanadium redox flow battery[J]. Chinese Journal of Power Sources, 2018, 42(6): 840-842.
79 Nguyen T D, Wang L P, Whitehead A, et al. Insights into the synergistic effect of ammonium and phosphate-containing additives for a thermally stable vanadium redox flow battery electrolyte[J]. Journal of Power Sources, 2018, 402: 75-81.
80 Wei Xian-li, Liu Su-qin, Wang Jue, et al. Boosting the performance of positive electrolyte for VRFB by employing zwitterion molecule containing sulfonic and pyridine groups as the additive[J]. Ionics, 2020, 26(6): 3147-3159.
81 Cao Liu-yue, Skyllas-Kazacos M, Menictas C, et al. A review of electrolyte additives and impurities in vanadium redox flow batteries[J]. Journal of Energy Chemistry, 2018, 27(5): 1269-1291.
82 Wu Xiao-jun, Liu Su-qin, Wang Nan-fang, et al. Influence of organic additives on electrochemical properties of the positive electrolyte for all-vanadium redox flow battery[J]. Electrochim Acta, 2012, 78: 475-482.
83 Hwang J, Kim B M, Moon J, et al. A highly efficient and stable organic additive for the positive electrolyte in vanadium redox flow batteries: taurine biomolecules containing -NH2 and -SO3H functional groups[J]. Journal of Materials Chemistry A, 2018, 6(11): 4695-4705.
84 Abbas S, Hwang J, Kim H, et al. Enzyme-inspired formulation of the electrolyte for stable and efficient vanadium redox flow batteries at high temperatures[J]. ACS Appl Mater Interfaces, 2019, 11(30): 26842-26853.
85 Tang Ao, Bao Jie, Skyllas-Kazacos M. Dynamic modelling of the effects of ion diffusion and side reactions on the capacity loss for vanadium redox flow battery[J]. Journal of Power Sources, 2011, 196(24): 10737-10747.
86 Jirabovornwisut T, Arpornwichanop A. A review on the electrolyte imbalance in vanadium redox flow batteries[J]. International Journal of Hydrogen Energy, 2019, 44(45): 24485-24509.
87 Ngamsai K, Arpornwichanop A. Investigating the air oxidation of V(II) ions in a vanadium redox flow battery[J]. Journal of Power Sources, 2015, 295: 292-298.
88 Xu Wen-jie, Long Jun, Liu Jun, et al. Novel highly efficient branched polyfluoro sulfonated polyimide membranes for application in vanadium redox flow battery[J]. Journal of Power Sources, 2021, 485: No. 229354.
89 Xi Jing-yu, Wu Zeng-hua, Teng Xiang-guo, et al. Self-assembled polyelectrolyte multilayer modified Nafion membrane with suppressed vanadium ion crossover for vanadium redox flow batteries[J]. Journal of Materials Chemistry, 2008, 18(11): 1232-1238.
90 Kraytsberg A, Ein-Eli Y. Review of advanced materials for proton exchange membrane fuel cells[J]. Energy & Fuels, 2017, 28(12): 7303-7330.
91 Ye Jia-jie, Yuan Du, Ding Mei, et al. A cost-effective nafion/lignin composite membrane with low vanadium ion permeation for high performance vanadium redox flow battery[J]. Journal of Power Sources, 2021, 482: No. 229023.
92 Minke C, Turek T. Economics of vanadium redox flow battery membranes[J]. Journal of Power Sources, 2015, 286: 247-257.
93 Wang Tong-shuai, Moon S J, Hwang D S, et al. Selective ion transport for a vanadium redox flow battery (VRFB) in nano-crack regulated proton exchange membranes[J]. Journal of Membrane Science, 2019, 583: 16-22.
94 Yang Rui-dong, Cao Zi-shu, Yang Shao-wei, et al. Colloidal silicalite-nafion composite ion exchange membrane for vanadium redox-flow battery[J]. Journal of Membrane Science, 2015, 484: 1-9.
95 Zhang Yang, Cui Zhi-ming, Zhao Cheng-ji, et al. Synthesis and characterization of novel sulfonated poly(arylene ether ketone) copolymers with pendant carboxylic acid groups for proton exchange membranes[J]. Journal of Power Sources, 2009, 191(2): 253⁃258.
96 Ji Y, Tay Z Y, Li S F Y. Highly selective sulfonated poly(ether ether ketone)/titanium oxide composite membranes for vanadium redox flow batteries[J]. Journal of Membrane Science, 2017, 539: 197-205.
97 Wang T S, Jeon J Y, Han J, et al. Poly(terphenylene) anion exchange membranes with high conductivity and low vanadium permeability for vanadium redox flow batteries (VRFBs)[J]. J Membr Sci, 2020, 598: No.117665.
98 Yuan Zhi-zhang, Duan Yin-qi, Zhang Hong-zhang, et al. Advanced porous membranes with ultra-high selectivity and stability for vanadium flow batteries[J]. Energy & Environmental Science, 2016, 9(2): 441-447.
99 Ding Li-ming, Song Xi-peng, Wang Li-hua, et al. Preparation of dense polybenzimidazole proton exchange membranes with different basicity and flexibility for vanadium redox flow battery applications[J]. Electrochim Acta, 2018, 292: 10-19.
100 Jung M, Lee W, Krishnan N N, et al. Porous-Nafion/PBI composite membranes and Nafion/PBI blend membranes for vanadium redox flow batteries[J]. Applied Surface Science, 2018, 450: 301-311.
101 Hwang G J, Kim S W, In D M, et al. Application of the commercial ion exchange membranes in the all-vanadium redox flow battery[J]. Journal of Industrial and Engineering Chemistry, 2018, 60: 360-365.
102 Park E J, Maurya S, Martinez U, et al. Quaternized poly(arylene ether benzonitrile) membranes for vanadium redox flow batteries[J]. Journal of Membrane Science, 2021, 617: No.118565.
103 Chen D Y, Hickner M A, Agar E, et al. Selective anion exchange membranes for high coulombic efficiency vanadium redox flow batteries[J]. Electrochemistry Communications, 2013, 26: 37-40.
104 Dai Ji-cui, Dong Yi-chao, Gao Peng, et al. A sandwiched bipolar membrane for all vanadium redox flow battery with high coulombic efficiency[J]. Polymer, 2018, 140: 233-239.
105 Xia Zi-jun, Ying Li-bin, Fang Jian-hua, et al. Preparation of covalently cross-linked sulfonated polybenzimidazole membranes for vanadium redox flow battery applications[J]. Journal of Membrane Science, 2017, 525: 229-239.
106 Wang Gang, Zhang Miao-miao, He Zhen-jia, et al. Novel amphoteric ion exchange membranes by blending sulfonated poly(ether ether ketone) with ammonium polyphosphate for vanadium redox flow battery applications[J]. Journal of Applied Polymer Science, 2021, 138(25): No. 50592.
107 李玲. 季铵功能化侧链型阴离子交换膜的制备[D]. 厦门:厦门大学化学化工学院, 2019.
Li Ling. Preparation of quaternary ammoinium functionalized side chain anion exchange membranes[D]. Xiamen: College of Chemistry and Chemical Engineering, Xiamen University, 2019.
108 Wang Lie, Yu Li-hong, Mu Di, et al. Acid-base membranes of imidazole-based sulfonated polyimides for vanadium flow batteries[J]. Journal of Membrane Science, 2018, 552: 167-176.
109 陈宇宁, 张守海, 蹇锡高. 钒电池用两性离子交换膜的研究进展[J]. 膜科学与技术, 2020, 40(3): 151-160.
Chen Yu-ning, Zhang Shou-hai, Jian Xi-gao. Recent progress on amphoteric ion exchange membranes for vanadium redox flow battery applications[J]. Membrane Science and Technology, 2020, 40(3): 151-160.
110 Yan Xiao-ming, Zhang Cai-mian, Dai Yan, et al. A novel imidazolium-based amphoteric membrane for high-performance vanadium redox flow battery[J]. Journal of Membrane Science, 2017, 544: 98-107.
111 Xi Xiao-li, Ding-cong, Zhang Hong-zhang, et al. Solvent responsive silica composite nanofiltration membrane with controlled pores and improved ion selectivity for vanadium flow battery application[J]. Journal of Power Sources, 2015, 274: 1126-1134.
112 Chen Dong-ju, Li Dan-dan, Li Xian-feng. Hierarchical porous poly (ether sulfone) membranes with excellent capacity retention for vanadium flow battery application[J]. Journal of Power Sources, 2017, 353: 11-18.
113 Zhang Hong-zhang, Zhang H, Li X, et al. Nanofiltration (NF) membranes: the next generation separators for all vanadium redox flow batteries (VRBs)? [J]. Energy and Environmental Science, 2011, 4(5): 1676-1679.
114 Zhou X L, Zhao T S, An L, et al. Modeling of ion transport through a porous separator in vanadium redox flow batteries[J]. Journal of Power Sources, 2016, 327: 67-76.
115 Zhang Hong-zhang, Zhang Hua-min, Li Xian-feng, et al. Silica modified nanofiltration membranes with improved selectivity for redox flow battery application[J]. Energy and Environmental Science, 2012, 5(4): 6299-6303.
116 Sun Chen-xi, Chen Jian, Zhang Hua-min, et al. Investigations on transfer of water and vanadium ions across Nafion membrane in an operating vanadium redox flow battery[J]. Journal of Power Sources, 2010, 195(3): 890-897.
117 Kumar S, Jayanti S. Effect of flow field on the performance of an all-vanadium redox flow battery[J]. Journal of Power Sources, 2016, 307: 782-787.
118 Ulaganathan M, Aravindan V, Yan Q Y, et al. Recent advancements in all-vanadium redox flow batteries[J]. Advanced Materials Interfaces, 2016, 3(1): No.1500309.
119 Tang A, Bao J, Skyllas-Kazacos M. Dynamic modelling of the effects of ion diffusion and side reactions on the capacity loss for vanadium redox flow battery[J]. Journal of Power Sources, 2011, 196(24): 10737-10747.
120 Mohammadi T, Mahdifar M, Chieng S C. Water transport study across ion exchange membranes in the vanadium redox flow battery[J]. Journal of Membrane Science, 1997, 133(2): 151-159.
121 Sepehr F, Paddison S J. The solvation structure and thermodynamics of aqueous vanadium cations[J]. Chem Phys Lett, 2013, 585: 53-58.
122 Messaggi M, Canzi P, Mereu R, et al. Analysis of flow field design on vanadium redox flow battery performance: development of 3D computational fluid dynamic model and experimental validation[J]. Appl Energy, 2018, 228: 1057-1070.
123 Yin Cong, Gao Yan, Xie Guang-you, et al. Three dimensional multi-physical modeling study of interdigitated flow field in porous electrode for vanadium redox flow battery[J]. Journal of Power Sources, 2019, 438: No.227023.
124 Zhang B W, Lei Y, Bai B F, et al. A two-dimensional model for the design of flow fields in vanadium redox flow batteries[J]. International Journal of Heat and Mass Transfer, 2019, 135: 460-469.
125 Lee J, Kim J, Park H. Numerical simulation of the power-based efficiency in vanadium redox flow battery with different serpentine channel size[J]. International Journal of Hydrogen Energy, 2019, 44(56): 29483-29492.
126 Ali E, Kwon H, Choi J, et al. A numerical study of electrode thickness and porosity effects in all vanadium redox flow batteries[J]. Journal of Energy Storage, 2020, 28: No.101208.
127 Houser J, Clement J, Pezeshki A, et al. Influence of architecture and material properties on vanadium redox flow battery performance[J]. Journal of Energy Storage, 2016, 302: 369-377.
128 Messaggi M, Rabissi C, Gambaro C, et al. Investigation of vanadium redox flow batteries performance through locally-resolved polarisation curves and impedance spectroscopy: insight into the effects of electrolyte, flow field geometry and electrode thickness[J]. Journal of Power Sources, 2020, 449: No.227588.
129 Xu Q, Zhao T S, Leung P K. Numerical investigations of flow field designs for vanadium redox flow batteries[J]. Appl Energy, 2013, 105: 47-56.
130 Maurya S, Nguyen P T, Kim Y S, et al. Effect of flow field geometry on operating current density, capacity and performance of vanadium redox flow battery[J]. Journal of Power Sources, 2018, 404: 20-27.
131 Macdonald M, Darling R M. Comparing velocities and pressures in redox flow batteries with interdigitated and serpentine channels[J]. Aiche Journal, 2019, 65(5):No. e16553.
132 Houser J, Clement J, Pezeshki A, et al. Influence of architecture and material properties on vanadium redox flow battery performance[J]. Journal of Power Sources, 2016, 302: 369-377.
133 Dennison C R, Agar E, Akuzum B, et al. Enhancing mass transport in redox flow batteries by tailoring flow field and electrode design[J]. Journal of the Electrochemical Society A, 2016, 163(1): 5163-5169.
134 Sun Jie, Zheng Meng-lian, Yang Zhong-shu, et al. Flow field design pathways from lab-scale toward large-scale flow batteries[J]. Energy, 2019, 173: 637-646.
135 Sun Jie, Zheng Meng-lian, Luo Yan-song, et al. Three-dimensional detached serpentine flow field design for redox flow batteries[J]. Journal of Power Sources, 2019, 428: 136-145.
136 Yaji K, Yamasaki S, Tsushima S, et al. Topology optimization for the design of flow fields in a redox flow battery[J]. Structural and Multidisciplinary Optimization, 2018, 57(2): 535-546.
137 Chen C H, Yaji K, Yamasaki S, et al. Computational design of flow fields for vanadium redox flow batteries via topology optimization[J]. The Journal of Energy Storage, 2019, 26: No.100990.
[1] 刘宁庆, 韩雪, 张文彬. 基于混沌搜索的蜂窝网基站能量效率与服务质量的联合优化[J]. 吉林大学学报(工学版), 2016, 46(5): 1660-1666.
[2] 李钊, 李培凤, 蔡沈锦. 基于动态中继激励的协作下行传输用户调度[J]. 吉林大学学报(工学版), 2016, 46(4): 1313-1319.
[3] 张瑞华, 程合友, 贾智平. 基于能量效率的无线传感器网络分簇算法[J]. 吉林大学学报(工学版), 2010, 40(06): 1663-1667.
[4] 薛建彬,朱延峰,袁占亭 . 一种适配数据速率的IEEE 802.16e休眠机制算法[J]. 吉林大学学报(工学版), 2009, 39(02): 519-0524.
[5] 张瑞华,贾智平,袁东风 . 异构型无线传感器网络的生命周期[J]. 吉林大学学报(工学版), 2008, 38(05): 1136-1140.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!