吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (6): 1459-1465.doi: 10.13229/j.cnki.jdxbgxb20210010

• 通信与控制工程 • 上一篇    

多输入多输出雷达波束空间ESPRIT角度估计方法

徐丽琴1,2(),李勇1,刘有耀2,张建国2   

  1. 1.西北工业大学 电子信息学院,西安 710072
    2.西安邮电大学 电子工程学院,西安 710121
  • 收稿日期:2021-01-11 出版日期:2022-06-01 发布日期:2022-06-02
  • 作者简介:徐丽琴(1980-),女,博士研究生. 研究方向:阵列信号处理,雷达信号处理. E-mail:xuliqin@xupt.edu.cn
  • 基金资助:
    国家自然科学基金项目(61874087)

Beamspace ESPRIT for angle estimation in multiple⁃input multiple⁃output radar

Li-qin XU1,2(),Yong LI1,You-yao LIU2,Jian-guo ZHANG2   

  1. 1.School of Electronics and Information,Northwestern Polytechnical University,Xi'an 710072,China
    2.School of Electronic Engineering,Xi'an University of Posts and Telecommunications,Xi'an 710121,China
  • Received:2021-01-11 Online:2022-06-01 Published:2022-06-02

摘要:

为了以较少的计算代价获得更好的角度估计性能,提出了一种用于多输入多输出(MIMO)雷达波达方向(DOA)估计的波束空间共轭旋转不变技术(ESPRIT)算法。首先,利用降维变换将接收数据转换至低维空间。然后,利用信号的非圆特性构造虚拟阵元数加倍的扩展数据矩阵,再进行波束空间实值化处理。最后,在波束空间中构造扩展实值导向矢量的旋转不变关系,从而获得目标方位的估计。与传统的ESPRIT算法相比,本文方法可以大大提高角度估计性能,并且可以显著减少计算量。

关键词: 多输入多输出雷达, 波达方向估计, 旋转不变技术, 非圆信号

Abstract:

In order to obtain better angle estimation performance at less cost, a beamspace conjugate ESPRIT algorithm for direction of arrival (DOA) estimation in multiple-input multiple-output (MIMO) radar is presented. Firstly, the reduced-dimensional transformation is utilized to transform the observed data into a lower-dimensional space. Then an augmented observation data matrix with double number of effective elements is constructed by taking advantage of the property of the noncircular signals and is mapped into beamspace. Finally, the rotational invariance property of the real-valued beamspace array manifold is constructed and exploited to find the directions of the targets. Compared to the conventional ESPRIT, the presented method can obtain greatly improved estimation performance and can achieve a significant reduction in the amount of computation. Numerical examples are presented to illustrate the performance of the presented algorithm.

Key words: multi-input multi-output radar, direction of arrival(DOA) estimation, rotational invariance techniques, non-circular signal

中图分类号: 

  • TN958

表1

运算复杂度比较"

算法运算复杂度
ESPRITO(4M2N2L+4M3N3+8MNP2+12P3)
RD-CESPRITO(4Ne2L+4Ne3+8NeP2+12P3)
C-ESPRITO(16M2N2L+32M3N3+32MNP2+12P3)
RV-ESPRITO(4M2N2L+8M3N3+4MNP2+3P3)
本文O(4MeNbsL+2Nbs2L+Nbs3+2NbsP2+3P3)

图1

不同波束个数时的波束形成增益"

图2

100次实验估计结果"

图3

角度估计精度随信噪比变化关系"

图4

角度估计精度随快拍数变化关系"

图5

角度分辨成功概率随信噪比变化关系"

图6

运算复杂度随阵元数变化关系"

1 Fishler E, Haimovic A, Blue R, et al. MIMO radar: an idea whose time has come[C]∥Proceedings of the 2004 IEEE Radar Conference, Philadelphia, PA, USA, 2004: 71-78.
2 Bekkerman I, Tabrikian J. Target detection and localization using mimo radars and sonars[J]. IEEE Transactions on Signal Processing, 2006, 54(10): 3873-3883.
3 Fishler E, Haimovich A, Blum R S, et al. Spatial diversity in radars-models and detection performance[J]. IEEE Transactions on Signal Processing, 2006, 54(3):823-838.
4 Wen F Q, Shi J, Zhang Z. Joint 2D-DOD, 2D-DOA and polarization angles estimation for bistatic EMVS-MIMO radar via PARAFAC analysis[J]. IEEE Transactions on Vehicular Technology, 2019, 69(2): 1626-1638.
5 Li J F, He L, He Y, et al. Joint direction of arrival estimation and array calibration for coprime MIMO radar[J]. Digital Signal Processing, 2019, 94: 67-74.
6 刘声, 杨力生, 殷艳红, 等. 双基地MIMO雷达的快速测向算法[J]. 吉林大学学报: 工学版, 2016, 46(5):1675-1680.
Liu Sheng, Yang Li-sheng, Yin Yan-hong, et al. Fast direction finding algorithm for dual-base MIMO radars[J]. Journal of Jilin University(Engineering and Technology Edition), 2016, 46(5):1675-1680.
7 Li Jian-feng, Jiang De-fu, Zhang Xiao-fei. DOA estimation based on combined unitary ESPRIT for coprime MIMO radar[J]. IEEE Communications Letters, 2017, 21(1): 96-99.
8 Zheng G M, Tang J, Xuan Y. ESPRIT and Unitary ESPRIT algorithms for coexistence of circular and noncircular signals in bistatic MIMO radar[J]. IEEE Access, 2016, 4: 7232-7240.
9 Xu J, Wang W Q, Gui R. Computational efficient DOA, DOD, and doppler estimation algorithm for MIMO radar[J]. IEEE Signal Processing Letters, 2018, 26(1): 44-48.
10 Duofang C, Baixiao C, Guodong Q. Angle estimation using ESPRIT in MIMO radar[J]. Electronics Letters, 2008, 44(12): 770-771.
11 Zheng G M, Chen B X, Yang M L. Unitary ESPRIT algorithm for bistatic MIMO radar[J]. Electronics Letters, 2012, 48(3): 179-181.
12 Zhang X, Xu D. Low-complexity ESPRIT-based DOA estimation for colocated MIMO radar using reduced-dimension transformation[J]. Electronics Letters, 2011, 47(4): 283-284.
13 Barbaresco F, Chevalier P. Noncircularity exploitation in signal processing overview and application to radar[C]∥In Proc of the IET Waveform Diversity and Digital Radar Conference, London, UK, 2008:1-6.
14 Yang M L, Chen B X, Yang X Y. Conjugate ESPRIT algorithm for bistatic MIMO radar[J]. Electronics Letters, 2010, 46(25): 1692-1694.
15 Wang W, Wang X P, Ma Y H, et al. Conjugate unitary ESPRIT algorithm for bistatic MIMO radar[J]. Ice Transactions on Electronics, 2013(1): 124-126.
16 Wang W, Wang X P, Song H R, et al. Conjugate ESPRIT for DOA estimation in monostatic MIMO radar[J]. Signal Processing, 2013, 93(7): 2070-2075.
17 Gong Jian, Lou Shun-tian, Guo Yi-duo. ESPRIT-like algorithm for computational-efficient angle estimation in bistatic multiple-input multiple-output radar[J]. Journal of Applied Remote Sensing, 2016, 10(2): No.025003.
18 Guo Y D, Zhang Y S, Gong J, et al. Direction finding with real-valued ESPRIT for noncircular signal in bistatic MIMO radar[J]. Wireless Personal Communications, 2017, 95: 3321-3332.
19 Ren S W, Ma X C, Yan S F, et al. 2-D unitary ESPRIT-like direction-of-arrival (DOA) estimation for coherent signals with a uniform rectangular array[J]. Sensors, 13(4): 4272-4288.
20 Stoica P, Gershman A B. Maximum-likelihood DOA estimation by data-supported grid search[J]. IEEE Signal Processing Letters, 1999, 6(10): 273-275.
[1] 窦慧晶,丁钢,高佳,梁霄. 基于压缩感知理论的宽带信号波达方向估计[J]. 吉林大学学报(工学版), 2021, 51(6): 2237-2245.
[2] 陈涛, 崔岳寒, 郭立民. 适用于单快拍的多重信号分类改进算法[J]. 吉林大学学报(工学版), 2018, 48(3): 952-956.
[3] 单泽彪, 刘小松, 王春阳, 石屹然, 石要武. 相干/同向信号波达方向与多普勒频率的联合估计[J]. 吉林大学学报(工学版), 2017, 47(6): 1949-1956.
[4] 石要武, 陈淼, 单泽涛, 石屹然, 单泽彪. 基于特征空间MUSIC算法的相干信号波达方向空间平滑估计[J]. 吉林大学学报(工学版), 2017, 47(1): 268-273.
[5] 李新波,石要武,马彦,张涵. 基于RARE-Cumulant的互耦校正和DOA估计[J]. 吉林大学学报(工学版), 2010, 40(04): 1118-1121.
[6] 陈建,王树勋,魏小丽. 一种基于L型阵列的二维波达方向估计的新方法[J]. 吉林大学学报(工学版), 2006, 36(04): 590-593.
[7] 卢海军, 王树勋, 姜宏. 一种有效扩展二阶循环统计量的方法[J]. 吉林大学学报(工学版), 2004, (4): 633-638.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!