吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (7): 1679-1686.doi: 10.13229/j.cnki.jdxbgxb20210117
• 通信与控制工程 • 上一篇
Yun-feng HU1,2(),Bao-lin MA2,Jia-mei LIN1,Xun GONG3,Xue-jun LI4
摘要:
针对混合动力汽车发动机最优运行曲线(OOL)离线台架标定工作量大、且实际道路工况下难以获得最优转速问题,提出了混合动力汽车发动机最优运行曲线在线优化方法。首先,建立混合动力汽车仿真模型,并通过冬天城市工况下的仿真验证了模型的精度;其次,提出了基于带遗忘因子递归最小二乘(RLS)的目标梯度估计方法,利用实时数据实现了最佳运行曲线优化过程中比油耗目标梯度的精确计算;然后,提出了基于梯度下降的发动机最佳工作点在线优化方法,实现了发动机最佳转速的实时计算;最后,通过与传统标定方法的对比仿真,验证了本文方法的实时性和控制效果上的优越性。
中图分类号:
1 | Boubaker S, Rehimi F, Kalboussi A. Effect of vehicular technology on energy consumption and emissions[J]. International Journal of Environmental Studies, 2015, 72(4): 667-684. |
2 | 夏超英, 杜智明. 丰田 PRIUS 混合动力汽车能量优化管理策略仿真分析[J]. 吉林大学学报:工学版, 2017, 47(2): 373-383. |
Xia Chao-ying, Du Zhi-ming. Simulation analysis of energy optimization management strategy for Toyota PRIUS hybrid electric vehicle[J]. Journal of Jilin University (Engineering and Technology Edition), 2017, 47(2): 373-383. | |
3 | 江冬冬, 李道飞, 俞小莉. 基于混杂模型预测控制的混合动力车辆能量管理[J]. 吉林大学学报:工学版, 2020,50(4): 1217-1226. |
Jiang Dong-dong, Li Dao-fei, Yu Xiao-li. Hybrid electric vehicle energy management based on hybrid model predictive control[J]. Journal of Jilin University (Engineering and Technology Edition), 2020,50(4): 1217-1226. | |
4 | Gupta R, Kolmanovsky I V, Wang Y, et al. Onboard learning-based fuel consumption optimization in series hybrid electric vehicles[C]∥ American Control Conference (ACC), Montreal, Canda, 2012: 1308-1313. |
5 | Park S, Kim Y, Woo S, et al. Optimization and calibration strategy using design of experiment for a diesel engine[J]. Applied Thermal Engineering, 2017, 123: 917-928. |
6 | Belgiorno G, Di Blasio G, Beatrice C. Parametric study and optimization of the main engine calibration parameters and compression ratio of a methane-diesel dual fuel engine[J]. Fuel, 2018, 222: 821-840. |
7 | de Nola F, Giardiello G, Gimelli A, et al. Reduction of the experimental effort in engine calibration by using neural networks and 1D engine simulation[J]. Energy Procedia, 2018, 148: 344-351. |
8 | de Nola F, Giardiello G, Gimelli A, et al. Volumetric efficiency estimation based on neural networks to reduce the experimental effort in engine base calibration[J]. Fuel, 2019, 244: 31-39. |
9 | Li N, Kolmanovsky I, Girard A. Model-free optimal control based automotive control system falsification[C]// American Control Conference (ACC), Seattle, USA,2017: 636-641. |
10 | Wong P K, Gao X H, Wong K I, et al. Efficient point-by-point engine calibration using machine learning and sequential design of experiment strategies[J]. Journal of the Franklin Institute, 2018, 355(4): 1517-1538. |
11 | van Dooren S, Balerna C, Salazar M, et al. Optimal diesel engine calibration using convex modelling of Pareto frontiers[J]. Control Engineering Practice, 2020, 96: 104313. |
12 | Hu Q, Amini M R, Wang H, et al. Integrated power and thermal management of connected HEVs via multi-horizon MPC[C]∥American Control Conference (ACC), Online,2020: 3053-3058. |
13 | Liu J, Peng H, Filipi Z. Modeling and analysis of the Toyota hybrid system[J]. TIC, 2005, 200(3):134-139. |
[1] | 陶隽源,孙金玮,李德胜 . 基于线性平均的强化学习函数估计算法[J]. 吉林大学学报(工学版), 2008, 38(06): 1407-1411. |
|