吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (7): 1679-1686.doi: 10.13229/j.cnki.jdxbgxb20210117

• 通信与控制工程 • 上一篇    

混合动力汽车的发动机最优运行曲线在线优化方法

胡云峰1,2(),麻宝林2,林佳眉1,宫洵3,李学军4   

  1. 1.吉林大学 汽车仿真与控制国家重点实验室,长春 130022
    2.吉林大学 通信工程学院,长春 130022
    3.吉林大学 人工智能学院,长春 130012
    4.长春大学 电子信息工程学院,长春 130022
  • 收稿日期:2021-02-05 出版日期:2022-07-01 发布日期:2022-08-08
  • 作者简介:胡云峰(1983-),男,教授,博士生导师.研究方向:发动机建模与优化控制.E-mail:huyf@jlu.edu.cn
  • 基金资助:
    国家自然科学基金项目(61773009);吉林省科技厅自然科学基金项目(20180101037JC);吉林大学省校共建项目(SXGJSF2017-2-1-1)

Online optimization method of hybrid electric vehicle's engine optimal operating line

Yun-feng HU1,2(),Bao-lin MA2,Jia-mei LIN1,Xun GONG3,Xue-jun LI4   

  1. 1.State Key Laboratory of Automotive Simulation and Control,Jilin University,Changchun 130022,China
    2.College of Communication Engineering,Jilin University,Changchun 130022,China
    3.College of Artificial Intelligence,Jilin University,Changchun 130012,China
    4.School of Electronic Information Engineering,Changchun University,Changchun 130022,China
  • Received:2021-02-05 Online:2022-07-01 Published:2022-08-08

摘要:

针对混合动力汽车发动机最优运行曲线(OOL)离线台架标定工作量大、且实际道路工况下难以获得最优转速问题,提出了混合动力汽车发动机最优运行曲线在线优化方法。首先,建立混合动力汽车仿真模型,并通过冬天城市工况下的仿真验证了模型的精度;其次,提出了基于带遗忘因子递归最小二乘(RLS)的目标梯度估计方法,利用实时数据实现了最佳运行曲线优化过程中比油耗目标梯度的精确计算;然后,提出了基于梯度下降的发动机最佳工作点在线优化方法,实现了发动机最佳转速的实时计算;最后,通过与传统标定方法的对比仿真,验证了本文方法的实时性和控制效果上的优越性。

关键词: 混联式混合动力汽车, 最优运行曲线, 在线优化, 梯度下降, 递归最小二乘

Abstract:

In view of the large workload of off-line bench calibration of the optimal operating line (OOL) of hybrid electric vehicle engines, and the difficulty of obtaining the optimal speed under actual road conditions, an online optimization method for the optimal operating line of hybrid electric vehicle engines was proposed. First, a hybrid electric vehicle simulation model was established, and the accuracy of the model was verified through simulations under winter urban condition. Secondly, a target gradient estimation method based on recursive least squares (RLS) with forgetting factor was proposed,the accurate calculation of the specific fuel consumption target gradient in the process of optimizing the optimal operating line was realized using the real?time data. Then, an online optimization method for the optimal operating point of the engine based on gradient descent was proposed to realize the real-time calculation of the optimal engine speed. The comparative simulation of traditional calibration methods verifies the superiority of proposed method in real-time and control effect.

Key words: power split hybrid electrical vehicle, optimal operating line, online optimization, gradient descent, recursive least squares

中图分类号: 

  • TK401

图1

发动机瞬时油耗修正因子与冷却剂温度的关系"

图2

电池开路电压内阻与荷电状态的关系"

图3

真实路况下模型验证结果图"

图4

发动机平顺功率下最佳工作点在线学习实施图"

图5

发动机最佳工作点优化流程图"

图6

混联式混合动力汽车Simulink模型图"

表 1

混合动力汽车参数表"

参 数数 值参 数数 值
整车质量/kg1254空气比热容/[J·(kg·K)-11003
车轮半径/m0.287空气密度/(kg·m-3)1.2
迎风面积/m22.520滚动阻力系数0.015
空气阻力系数0.3电池容量/(A·h)6.5

图7

GD+RLS方法下发动机转速寻优图(输出功率50 kW)"

图8

发动机最优工作点在线优化算力时间"

图9

暖机状态下在线优化与标定OOL对比图(模拟未老化)"

图10

非暖机状态下在线优化得到的OOL(模拟未老化)"

图11

暖机状态下在线优化得到的OOL(模拟老化)"

图12

UDDS工况下油耗对比图(未老化)"

图13

UDDS工况下油耗对比图(老化后)"

1 Boubaker S, Rehimi F, Kalboussi A. Effect of vehicular technology on energy consumption and emissions[J]. International Journal of Environmental Studies, 2015, 72(4): 667-684.
2 夏超英, 杜智明. 丰田 PRIUS 混合动力汽车能量优化管理策略仿真分析[J]. 吉林大学学报:工学版, 2017, 47(2): 373-383.
Xia Chao-ying, Du Zhi-ming. Simulation analysis of energy optimization management strategy for Toyota PRIUS hybrid electric vehicle[J]. Journal of Jilin University (Engineering and Technology Edition), 2017, 47(2): 373-383.
3 江冬冬, 李道飞, 俞小莉. 基于混杂模型预测控制的混合动力车辆能量管理[J]. 吉林大学学报:工学版, 2020,50(4): 1217-1226.
Jiang Dong-dong, Li Dao-fei, Yu Xiao-li. Hybrid electric vehicle energy management based on hybrid model predictive control[J]. Journal of Jilin University (Engineering and Technology Edition), 2020,50(4): 1217-1226.
4 Gupta R, Kolmanovsky I V, Wang Y, et al. Onboard learning-based fuel consumption optimization in series hybrid electric vehicles[C]∥ American Control Conference (ACC), Montreal, Canda, 2012: 1308-1313.
5 Park S, Kim Y, Woo S, et al. Optimization and calibration strategy using design of experiment for a diesel engine[J]. Applied Thermal Engineering, 2017, 123: 917-928.
6 Belgiorno G, Di Blasio G, Beatrice C. Parametric study and optimization of the main engine calibration parameters and compression ratio of a methane-diesel dual fuel engine[J]. Fuel, 2018, 222: 821-840.
7 de Nola F, Giardiello G, Gimelli A, et al. Reduction of the experimental effort in engine calibration by using neural networks and 1D engine simulation[J]. Energy Procedia, 2018, 148: 344-351.
8 de Nola F, Giardiello G, Gimelli A, et al. Volumetric efficiency estimation based on neural networks to reduce the experimental effort in engine base calibration[J]. Fuel, 2019, 244: 31-39.
9 Li N, Kolmanovsky I, Girard A. Model-free optimal control based automotive control system falsification[C]// American Control Conference (ACC), Seattle, USA,2017: 636-641.
10 Wong P K, Gao X H, Wong K I, et al. Efficient point-by-point engine calibration using machine learning and sequential design of experiment strategies[J]. Journal of the Franklin Institute, 2018, 355(4): 1517-1538.
11 van Dooren S, Balerna C, Salazar M, et al. Optimal diesel engine calibration using convex modelling of Pareto frontiers[J]. Control Engineering Practice, 2020, 96: 104313.
12 Hu Q, Amini M R, Wang H, et al. Integrated power and thermal management of connected HEVs via multi-horizon MPC[C]∥American Control Conference (ACC), Online,2020: 3053-3058.
13 Liu J, Peng H, Filipi Z. Modeling and analysis of the Toyota hybrid system[J]. TIC, 2005, 200(3):134-139.
[1] 陶隽源,孙金玮,李德胜 . 基于线性平均的强化学习函数估计算法[J]. 吉林大学学报(工学版), 2008, 38(06): 1407-1411.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!