吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (11): 3069-3077.doi: 10.13229/j.cnki.jdxbgxb.20211429

• 材料科学与工程 • 上一篇    下一篇

超声振动辅助砂带磨抛钛合金的磨削力建模分析

黄智1(),闵杰1,周涛1,杨健2,肖力行2,李林泽2   

  1. 1.电子科技大学 机械与电气工程学院,成都 611731
    2.四川成飞集成科技股份有限公司,成都 610091
  • 收稿日期:2021-12-24 出版日期:2023-11-01 发布日期:2023-12-06
  • 作者简介:黄智(1977-),男,副教授,博士.研究方向:高效精密磨削工艺.E-mail:zhihuang@uestc.edu.cn
  • 基金资助:
    四川省科技计划项目(2020JDRC0173)

Modeling and analysis of grinding force for grinding titanium alloy with abrasive belt assisted by ultrasonic vibration

Zhi HUANG1(),Jie MIN1,Tao ZHOU1,Jian YANG2,Li-xing XIAO2,Lin-ze LI2   

  1. 1.School of Mechanical and Electrical Engineering,University of Electronic Science and Technology,Chengdu 611731,China
    2.Sichuan Chengfei Integration Technology Corp. ,Chengdu 610091,China
  • Received:2021-12-24 Online:2023-11-01 Published:2023-12-06

摘要:

基于赫兹接触理论简化接触轮和工件的接触模型,分析了超声振动砂带磨削原理,并对超声辅助的磨粒运动特性进行了研究。通过将磨削力分为切削变形力和摩擦力两部分,分析超声振动对切削变形力和摩擦力的影响。结果表明:建立的模型具有较高的预测精度,可为后续实际加工指导提供有效参考与理论基础。

关键词: 超声振动, 磨削力, 钛合金, 砂带磨削

Abstract:

Based on Hertz contact theory, the contact model of contact wheel and workpiece is simplified to analyze the principle of ultrasonic vibration belt grinding, and the motion characteristics of ultrasonic assisted abrasive particles are analyzed. By dividing grinding force into cutting deformation force and friction force, the influence of ultrasonic vibration on cutting deformation force and friction force is analyzed. The results show that the proposed model has high prediction accuracy and provides effective reference and theoretical basis for subsequent practical machining guidance.

Key words: ultrasonic vibration, grinding force, titanium alloy, abrasive belt grinding

中图分类号: 

  • V216.3

图1

超声振动辅助砂带磨削加工原理"

图2

超声砂带磨抛磨粒三维运动轨迹"

图3

单颗磨粒接触运动轨迹"

图4

磨粒压痕模型"

图5

磨粒切削变形力受力图"

图6

截面受力图"

图7

工艺实验现场"

图8

砂带磨抛装置结构组成"

图9

磨削力测量图像"

表1

正交实验参数"

实验 组别砂带线速度Vs/(m·s-1工件进给速度Vw/(mm·min-1磨削深度ap/μm振动幅度A/μm
125054
22100108
321501512
43501012
53100154
6315058
7450158
84100512
94150104

表2

磨削力实验结果"

磨削力实验组别
123456789
法向磨削力Fn/N7.828.409.646.058.677.874.825.636.92
切向磨削力Ft/N5.765.406.235.236.245.224.203.384.15

图10

磨削力实验模型值对比"

图11

增加超声振动前后磨削力大小的对比图"

图12

Mahr粗糙度仪"

图13

加工前、有无超声加工后的表面粗糙度对比图"

1 Xu X, Zhu D, Wang J, et al. Calibration and accuracy analysis of robotic belt grinding system using the ruby probe and criteria sphere[J]. Robotics and Computer-Integrated Manufacturing, 2018, 51: 189-201.
2 Yu T B, Yang X Z, An J H, et al. Material removal mechanism of two-dimensional ultrasonic vibration assisted polishing Inconel718 nickel-based alloy[J]. Int J Adv Manuf Technol, 2018, 96: 657-667.
3 Jiao F, Zhao B, Liu C S, et al. Material removal rate characteristics in ultrasonic aided lapping of engineering ceramics based on single-point scratch[J]. Key Engineering Materials, 2008, 375/376: 263-267.
4 Wu Y, Sun A G, Zhao B, et al. Modeling of high efficiency removal in the grinding of aluminal/ZrO2 nanocomposites with the aid of two-dimensional ultrasonic vibration[J]. Key Engineering Materials, 2007, 329: 451-458.
5 Kuo K L, Tsao C C. Rotary ultrasonic-assisted milling of brittle materials[J]. Transactions of Nonferrous Metals Society of China, 2012, 22: 793-800.
6 Yan Y Y, Zhao B, Wu Y, et al. Study on material removal mechanism of fine-crystalline ZrO2 ceramics under two dimensional ultrasonic grinding[J]. Materials Science Forum, 2006, 532/533: 532-535.
7 Yan W, Bo Z, Xun S Z. Modeling of material removal in workpiece lateral ultrasonic vibration grinding of fine-crystalline zirconia ceramics[J]. Key Engineering Materials, 2006, 315/316(4): 304-308.
8 赵波, 陈凡, 童景琳. 超声磨削材料去除率的理论分析与试验研究[J]. 河南理工大学学报: 自然科学版, 2013, 32(3): 302-307.
Zhao Bo, Chen Fan, Tong Jing-lin. Theoretical and experimental research on material removal rate under ultrasonic grinding[J]. Journal of Henan Polytechnic University (Natural Science Edition), 2013, 32(3): 302-307.
9 Suzuki K, Uematsu T, Makizaki T, et al. Ultrasonic grinding utilizing a stator of an ultrasonic motor[J]. The Proceedings of The Manufacturing & Machine Tool Conference, 2000, 2: 183-184.
10 Shen J Y, Dai B, Wu X, et al. Study on the material removal mechanism of glass in single diamond grain grinding with ultrasonic vibration assisted[J]. Int J of Abrasive Technology, 2019, 9(1): 60-72.
11 Tanaka Y, Yano A, Shinke N. Study on ultrasonic grinding (1st report): on the relations between the vibrational direction and stock removal[J]. Journal of the Japan Society for Precision Engineering, 1968, 34: 687-692.
12 Qin N, Pei Z J, Treadwell C, et al. Physics-based predictive cutting force model in ultrasonic-vibration-assisted grinding for titanium drilling[J]. Journal of Manufacturing Science and Engineering, 2009, 131(4): 481-498.
13 Das S, Pandivelan C. Grinding characteristics during ultrasonic vibration assisted grinding of alumina ceramic in selected dry and MQL conditions[J]. Materials Research Express, 2020, 7(8): 085404.
14 Xiao X, Zheng K, Liao W, et al. Study on cutting force model in ultrasonic vibration assisted side grinding of zirconia ceramics[J]. International Journal of Machine Tools & Manufacture, 2016(5): 58-67.
15 Sheng X M, Tang K, Yu J W, et al. Experimental research of grinding force and specific grinding energy of TC4 titanium alloy in high speed deep grinding[J]. Advanced Materials Research, 2009, 76/78: 55-60.
16 黄智, 董华章, 周振武, 等. 砂带磨削TC4磨削力数字建模及其预测[J]. 表面技术, 2018, 47(9): 250-258.
Huang Zhi, Dong Hua-zhang, Zhou Zhen-wu, et al. Modeling and prediction of grinding force on belt grinding TC4[J]. Surface Technology, 2018, 47(9): 250-258.
17 Leng Y F, Zhang N. Experiment research on abrasive belt vibration grinding terminal surface of work piece[J]. Advanced Materials Research,2010, 154/155: 1240-1243.
18 唐进元, 周伟华, 黄于林. 轴向超声振动辅助磨削的磨削力建模[J]. 机械工程学报, 2016, 52(15): 184-191.
Tang Jin-yuan, Zhou Wei-hua, Huang Yu-lin. Modeling on grinding force assisted with aial ultrasonic vibration[J]. Journal of Mechanical Engineering, 2016, 52(15): 184-191.
19 任庆磊, 魏昕, 谢小柱, 等. 硅片自旋转磨削中基于力的微接触机理[J]. 吉林大学学报: 工学版, 2018, 48(3): 796-802.
Ren Qing-lei, Wei Xin, Xie Xiao-zhu, et al. Micro contact mechanism based on force in self rotation grinding of silicon wafer[J]. Journal of Jilin University (Engineering and Technology Edition), 2018, 48(3): 796-802.
20 Zhou H, Ding W F, Li Z, et al. Predicting the grinding force of titanium matrix composites using the genetic algorithm optimizing back-propagation neural network model[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2019, 233(4): 1157-1167.
21 王家忠, 王龙山, 李国发, 等. 外圆纵向磨削表面粗糙度的模糊预测与控制[J]. 吉林大学学报: 工学版, 2005,35(4): 386-390.
Wang Jia-zhong, Wang Long-shan, Li Guo-fa, et al. Surface roughness prediction and control of cylinder traverse grinding based on fuzzy logic[J]. Journal of Jilin University (Engineering and Technology Edition), 2005, 35(4): 386-390.
22 任敬心, 华定安. 磨削原理[M]. 西安: 西北工业大学出版社, 1988.
Ren Jing-xin, Hua Ding-an. Grinding Principles[M]. Xi'an: Northwestern Polytechnic University Press, 1988.
23 Agarwal S, Venkateswara R P. Predictive modeling of force and power based on a new analytical undeformed chip thickness model in ceramic grinding[J]. International Journal of Machine Tools and Manufacture, 2013, 65: 68-78.
[1] 回丽,陆家琛,周松,安金岚,周冠妍,刘小鹏. 热处理对TC4钛合金激光双束焊接接头疲劳性能的影响[J]. 吉林大学学报(工学版), 2023, 53(1): 105-110.
[2] 关庆丰,姚欣雯,杨洋,张凌燕,刘迪,李晨,吕鹏. 强流脉冲电子束作用下TC4钛合金表面Cr合金层制备及性能[J]. 吉林大学学报(工学版), 2019, 49(6): 2002-2009.
[3] 张雷, 耿伟强, 鲍勇吉, 赵继. 用于羟基磷灰石冷喷涂的超声波送粉系统[J]. , 2012, (06): 1402-1408.
[4] 黄达,赵熹华,宋敏霞,冯吉才 . TC4/ZQSn10-10扩散连接接头残余应力的数值模拟[J]. 吉林大学学报(工学版), 2007, 37(05): 1078-1082.
[5] 彭太江,杨树臣,杨志刚,程光明,曾平, 张德君 . 超 声 波 的 减 摩 特 性[J]. 吉林大学学报(工学版), 2006, 36(增刊2): 88-90.
[6] 谭富星;李明哲 ;钱直睿;袁媛.

钛合金颅骨修复体的多点成形数值模拟

[J]. 吉林大学学报(工学版), 2006, 36(06): 851-0855.
[7] 郭伟,赵熹华,宋敏霞,冯吉才,杨飚. TC4/QAL10-3-1.5直接扩散连接形貌分析[J]. 吉林大学学报(工学版), 2006, 36(03): 285-0288.
[8] 宋敏霞,赵熹华,郭伟,冯吉才. Ti-6Al-4V/Ni/ZQSn10-10的扩散连接[J]. 吉林大学学报(工学版), 2006, 36(01): 42-0045.
[9] 常颖, 吴博达, 杨志刚, 程光明, 田丰君. 超声波悬浮推力轴承承载能力及减摩性能[J]. 吉林大学学报(工学版), 2004, (2): 222-225.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨树凯,宋传学,安晓娟,蔡章林 . 用虚拟样机方法分析悬架衬套弹性对
整车转向特性的影响
[J]. 吉林大学学报(工学版), 2007, 37(05): 994 -0999 .
[2] 冯金巧;杨兆升;张林;董升 . 一种自适应指数平滑动态预测模型[J]. 吉林大学学报(工学版), 2007, 37(06): 1284 -1287 .
[3] 刘寒冰,焦玉玲,,梁春雨,秦卫军 . 无网格法中形函数对计算精度的影响[J]. 吉林大学学报(工学版), 2007, 37(03): 715 -0720 .
[4] 杨庆芳,陈林 . 交通控制子区动态划分方法[J]. 吉林大学学报(工学版), 2006, 36(增刊2): 139 -142 .
[5] 李寿涛, 李元春. 在未知环境下基于递阶模糊行为的移动机器人控制算法[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[6] 刘庆民,王龙山,陈向伟,李国发. 滚珠螺母的机器视觉检测[J]. 吉林大学学报(工学版), 2006, 36(04): 534 -538 .
[7] 李红英;施伟光;甘树才 .

稀土六方Z型铁氧体Ba3-xLaxCo2Fe24O41的合成及电磁性能与吸波特性

[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[8] 张全发,李明哲,孙刚,葛欣 . 板材多点成形时柔性压边与刚性压边方式的比较[J]. 吉林大学学报(工学版), 2007, 37(01): 25 -30 .
[9] 于华楠,康健 . 改进的基于Kalman滤波的盲多用户检测算法
[J]. 吉林大学学报(工学版), 2006, 36(增刊2): 122 -125 .
[10] 李成,刘治华,张平 . 具有初始位移的两层转子结构复合材料储能飞轮的应力及位移分析[J]. 吉林大学学报(工学版), 2007, 37(04): 828 -832 .