吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (12): 3711-3716.doi: 10.13229/j.cnki.jdxbgxb.20231307

• 通信与控制工程 • 上一篇    下一篇

基于运动微分方程的两足步行机器人动姿态稳定控制方法

赵春燕(),彭景春   

  1. 黑龙江科技大学 理学院,哈尔滨 150022
  • 收稿日期:2023-11-28 出版日期:2024-12-01 发布日期:2025-01-24
  • 作者简介:赵春燕(1971-),女,副教授,硕士.研究方向:应用数学.E-mail:zhaochunyan20230@163.com
  • 基金资助:
    国家自然科学基金项目(50675054)

Dynamic attitude stability control method for biped walking robot based on differential equations of motion

Chun-yan ZHAO(),Jing-chun PENG   

  1. College of Science,Heilongjiang University of Science and Technology,Harbin 150022,China
  • Received:2023-11-28 Online:2024-12-01 Published:2025-01-24

摘要:

为使两足步行机器人在运行过程中保持稳定的动姿态,以较高的效率完成工作任务,提出了基于运动微分方程的两足步行机器人动姿态稳定控制方法。首先,建立两足步行机器人模型,确定其在世界坐标系和刚体坐标系中的坐标,并用齐次坐标的形式表示。其次,构建两足步行机器人动姿态稳定控制器,引入运动微分方程约束机器人的动姿态,使其在任何约束曲面中都能保持稳定。最后,将本文方法与另外两种算法展开对比实验测试,验证了本文方法具有极高的可行性和合理性。相较于其他算法,本文方法取得了更优秀的自平衡能力、抗干扰能力和动姿态稳定控制能力。

关键词: 运动微分方程, 动姿态稳定控制, 刚体坐标系, 世界坐标系, 约束曲面

Abstract:

In order to maintain a stable dynamic posture during the operation of biped walking robots and complete work tasks with high efficiency, a motion differential equation based dynamic posture stabilization control method for biped walking robots was proposed. Firstly,establish a biped walking robot model, determine its coordinates in the world coordinate system and rigid coordinate system, and express them in the form of homogeneous coordinates; Secondly,the dynamic attitude stability controller of biped walking robot is constructed, and the differential equation of motion is introduced to constrain the dynamic attitude of the robot, so that it can remain stable in any constrained surface;Finally,compared with the other two algorithms, the experimental results show that the proposed method is highly feasible and reasonable. Compared with other algorithms, the proposed method has better self-balancing ability, anti-interference ability and dynamic attitude stability control ability.

Key words: differential equations of motion, dynamic attitude stability control, rigid body coordinate system, world coordinate system, constrain surfaces

中图分类号: 

  • TP25

图1

两足步行机器人模型"

图2

两足步行机器人连杆运动位姿坐标示意图"

图3

3种算法倾角误差对比结果"

图4

3种算法的抗干扰恢复时间"

图5

实验斜坡环境示意图"

图6

三种算法在斜坡环境中的倾角幅度"

1 吴晓光, 刘绍维, 杨磊, 等. 基于深度强化学习的双足机器人斜坡步态控制方法[J]. 自动化学报, 2021, 47(8): 1976-1987.
Wu Xiao-guang, Liu Shao-wei, Yang Lei,et al. A gait control method for biped robot on slope based on deep reinforcement learning[J]. Acta Automatica Sinica, 2021, 47(8): 1976-1987.
2 廖发康, 周亚丽, 张奇志. 变长度柔性双足机器人行走控制及稳定性分析[J]. 计算机应用, 2023, 43(1): 312-320.
Liao Fa-kang, Zhou Ya-li, Zhang Qi-zhi. Walking control and stability analysis of flexible biped robot with variable length legs[J]. Journal of Computer Applications, 2023,43(1): 312-320.
3 尹孟可, 郭士杰, 孙磊, 等. 下肢步行助力外骨骼机器人的模糊自适应PID控制[J]. 机械设计, 2021, 38(9): 38-44.
Yin Meng-ke, Guo Shi-jie, Sun Lei, et al. Fuzzy adaptive PID control of the lower-limb walking-assistance exoskeleton robot[J]. Journal of Machine Design, 2021,38(9): 38-44.
4 于晓春, 贾骏恺, 李化洋, 等.六足机器人半被动行走步态控制方法及其动力学仿真[J]. 机械设计与研究, 2022, 38(1): 55-61.
Yu Xiao-chun, Jia Jun-kai, Li Hua-yang, et al. Research on the control method and dynamic simulation of semi-passive walking gait of hexapod robot[J]. Machine Design & Research, 2022, 38(1): 55-61.
5 刘莹, 邵彧.利用姿态传感器多点位控制机器人交互方法[J].机械设计与制造, 2023(2): 266-269.
Liu Ying, Shao Yu. Multi-point control robot interaction method using attitude sensor[J]. Machinery Design & Manufacture, 2023(2): 266-269.
6 钟浩然, 李新宇, 高亮, 等.适应非平整地面的双足机器人柔顺步态优化方法[J]. 华中科技大学学报: 自然科学版, 2021, 49(7): 97-102.
Zhong Hao-ran, Li Xin-yu, Gao Liang, et al. Gait planning optimization method for biped robots compliant walking on uneven terrain[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2021, 49(7): 97-102.
7 周友行,赵晗妘,刘汉江,等.采用DDPG的双足机器人自学习步态规划方法[J].计算机工程与应用,2021, 57(6): 254-259.
Zhou You-xing, Zhao Han-yun, Liu Han-jiang, et al. Self-Learning gait planning method for biped robot using DDPG[J]. Computer Engineering and Applications, 2021, 57(6): 254-259.
8 艾青林, 蒋锦涛, 刘刚江, 等. 基于遗传算法与模糊分数阶PID的钢结构损伤检测机器人姿态控制[J].高技术通讯, 2022, 32(6): 615-623.
Ai Qing-lin, Jiang Jin-tao, Liu Gang-jiang, et al. Attitude control of steel structure damage detection robot based on genetic algorithm and fuzzy fractional PID[J]. Chinese High Technology Letters, 2022, 32(6): 615-623.
9 张德伟, 刘海涛, 王仙业, 等.一种足式移动机器人的混合视觉伺服控制方法[J].机械科学与技术, 2022, 41(12): 1805-1814.
Zhang De-wei, Liu Hai-tao, Wang Xian-ye, et al. Hybrid visual servoing control of a legged mobile robot[J]. Mechanical Science and Technology for Aerospace Engineering, 2022,41(12):1805-1814.
10 王敏, 蒋金伟, 曹彦陶. 基于改进粒子群的食品分拣机器人动态目标抓取控制方法[J]. 食品与机械, 2022, 38(3): 86-91.
Wang Min, Jiang Jin-wei, Cao Yan-tao. Dynamic target grasping control method of food sorting robot based on improved particle swarm optimization[J]. Food and Machinery, 2022,38(3):86-91.
11 Ma, B, Li Y C, An T J,et al.Compensator-critic structure-based neuro-optimal control of modular robot manipulators with uncertain environmental contacts using non-zero-sum games[J].Knowledge-based Systems,2021,224(7):107100.1-107100.14.
12 Hartmann V N, Orthey A, Driess D,et al.Long-Horizon multi-robot rearrangement planning for construction assembly[J].IEEE Transactions on Robotics: A Publication of the IEEE Robotics and Automation Society, 2023, 39(1): 239-252.
13 Wang N, Xiang X, Jiang Y,et al.Modelling and vibration control for deep-sea robot lifting system with time variable length and nonlinear disturbance observer[J].Ocean Engineering, 2022, 246(2):No.110558.
14 Liu Y Q, Liu X F, Cai G P, et al.Trajectory planning and coordination control of a space robot for detumbling a flexible tumbling target in post-capture phase[J].Multibody System Dynamics,2021,52(3):281-311.
15 Zhi Q T, Ho L H, Kai Y T,et al.Model-based online learning and adaptive control for a "human-wearable soft robot" integrated system[J].International Journal of Robotics Research,2021, 40(1): 256-276.
16 Chen L, Liu J, Wang H,et al.Robust control of reaction wheel bicycle robot via adaptive integral terminal sliding mode[J].Nonlinear Dynamics,2021,104(4): No.4753.
17 Yan, Z P, Yang H Y, Zhang W,et al.Robust nonlinear model predictive control of a bionic underwater robot with external disturbances[J].Ocean Engineering,2022, 253(1): No.111310.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李寿涛, 李元春. 在未知环境下基于递阶模糊行为的移动机器人控制算法[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] 刘庆民,王龙山,陈向伟,李国发. 滚珠螺母的机器视觉检测[J]. 吉林大学学报(工学版), 2006, 36(04): 534 -538 .
[3] 李红英;施伟光;甘树才 .

稀土六方Z型铁氧体Ba3-xLaxCo2Fe24O41的合成及电磁性能与吸波特性

[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[4] 张全发,李明哲,孙刚,葛欣 . 板材多点成形时柔性压边与刚性压边方式的比较[J]. 吉林大学学报(工学版), 2007, 37(01): 25 -30 .
[5] .

吉林大学学报(工学版)2007年第4期目录

[J]. 吉林大学学报(工学版), 2007, 37(04): 0 .
[6] 李月英,刘勇兵,陈华 . 凸轮材料的表面强化及其摩擦学特性
[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .
[7] 冯浩,席建锋,矫成武 . 基于前视距离的路侧交通标志设置方法[J]. 吉林大学学报(工学版), 2007, 37(04): 782 -785 .
[8] 张和生,张毅,温慧敏,胡东成 . 利用GPS数据估计路段的平均行程时间[J]. 吉林大学学报(工学版), 2007, 37(03): 533 -0537 .
[9] 曲昭伟,陈红艳,李志慧,胡宏宇,魏巍 . 基于单模板的二维场景重建方法[J]. 吉林大学学报(工学版), 2007, 37(05): 1159 -1163 .
[10] 聂建军,杜发荣,高峰 . 存在热漏的内燃机与斯特林联合循环的有限时间的热力学研究[J]. 吉林大学学报(工学版), 2007, 37(03): 518 -0523 .