吉林大学学报(工学版) ›› 2025, Vol. 55 ›› Issue (1): 283-296.doi: 10.13229/j.cnki.jdxbgxb.20240006

• 交通运输工程·土木工程 • 上一篇    下一篇

预制钢管混凝土芯柱新型法兰连接试验与有限元分析

杨维国1,2(),苏英楠1,2,邹剑强3,马若辰3,张庆亮3   

  1. 1.北京交通大学 土木工程学院,北京 100091
    2.北京交通大学 结构风工程与城市风环境北京市重点实验室,北京 100091
    3.中国航空规划设计研究总院有限公司,北京 100120
  • 收稿日期:2024-01-02 出版日期:2025-01-01 发布日期:2025-03-28
  • 作者简介:杨维国(1973-),男,教授,博士.研究方向:结构抗震. E-mail: wgyang1@bjtu.edu.cn
  • 基金资助:
    国家重点研发计划项目(2019YFC1521000)

Experiment and finite element analysis on new type of flange connection for precast concrete-filled steel tube core column

Wei-guo YANG1,2(),Ying-nan SU1,2,Jian-qiang ZOU3,Ruo-chen MA3,Qing-liang ZHANG3   

  1. 1.College of Civil Engineering,Beijing Jiaotong University,Beijing 100091,China
    2.Beijing's Key Laboratory of Structural Wind Engineering and Urban Wind Environment,Beijing Jiaotong University,Beijing 100091,China
    3.China Aviation Planning and Design Institute(Group) Co. ,Ltd. ,Beijing 100120,China
  • Received:2024-01-02 Online:2025-01-01 Published:2025-03-28

摘要:

为了在多层预制叠合柱结构中实现柱-柱快速连接,对截面直径不大于400 mm的小截面钢管混凝土芯柱,提出了一种采用法兰盘和高强螺栓连接的新型法兰连接方法。该特点是在常规法兰中间设置过渡板并涂抹粘钢胶,通过调整过渡板和粘钢胶可调节预制柱长度误差、法兰盘倾斜误差和钢管内混凝土的凹凸误差。为了验证这种新型法兰连接受力的可靠性,设计4个试件进行试验,分别模拟无接头、正常连接、钢管内混凝土下凹、管内混凝土下凹且法兰倾斜等4种状况,同时考察各种施工不利因素对法兰轴向承载力的影响。通过轴向受拉、轴向受压试验和有限元分析获得试件的轴向承载力、破坏模式,采用有限元数值模拟方法对管内混凝土不平且安装倾斜的法兰连接钢管混凝土芯柱进行参数化分析。研究结果表明:该预制钢管混凝土芯柱法兰连接刚度大、承载力高、延性好,节点受力可靠;随着钢管壁厚的增加,连接并未发生破坏,该新型法兰连接受压承载力具有相当大的安全余量;钢管内混凝土凹凸不平对芯柱初始刚度和峰值承载力影响不大;法兰盘过大倾斜时将降低芯柱初始刚度和峰值承载力,施工时应引起注意。

Abstract:

In order to achieve rapid column-to-column connection in multi-story precast composite column structures, this study proposes a new flange connection method using flange plates and high-strength bolts for small-section steel tubular concrete core columns with a diameter not exceeding 400 mm. The method involves adjusting the transition plate and applying adhesive steel glue to compensate for the precast column length error, flange plate inclination error, and irregularities in the concrete inside the steel tube. The core concrete-filled steel tubes columns can bear vertical loads during construction, and the flange connection is simple, convenient, and has high compression stiffness and load-bearing capacity. To verify the reliability of this new flange connection, four specimens were designed in this study, representing four conditions: without connection section, normal connection, concave concrete inside the steel tube, and concave concrete inside the tube with inclined flanges. The influence of various adverse construction factors on the axial load-bearing capacity of the flange was examined. Axial tensile and compression tests and finite element analysis were conducted to obtain the axial load-bearing capacity and failure mode of the specimens. Parametric analysis of flange-connected steel tubular concrete core columns with uneven and inclined concrete inside the tube was performed using finite element numerical simulation. The research results demonstrate that the proposed precast steel tubular concrete core column with flange connection has high stiffness, load-bearing capacity, and ductility, ensuring reliable force distribution at the connection points. Increasing the steel tube wall thickness does not lead to connection failure, indicating a significant safety margin for the compression load-bearing capacity of this new flange connection. The irregularities in the concrete inside the steel tube have minimal effect on the initial stiffness and peak load-bearing capacity of the core column. However, excessive inclination of the flange plate reduces the initial stiffness and peak load-bearing capacity of the core column, which should be considered during construction.

中图分类号: 

  • TU273
1 . 钢管混凝土结构技术规范 [S].
2 . 钢管混凝土拱桥技术规范 [S].
3 朱瑞元, 李喜来, 廖宗高,等. 大跨越钢管混凝土输电塔抗震性能分析[J]. 电力勘测设计, 2018,25(2):137.
3 Zhu Rui-yuan, Li Xi-lai, Liao Zong-gao, et al. Seismic performance analysis of a long-span concrete filled steel-tube transmission tower[J]. Elextric Power Survey & Design,2018,25(2):137.
4 T/ .钢管混凝土叠合柱结构技术规程[S].
5 吴庆雄, 佘智敏, 袁辉辉,等. 钢管混凝土箱形叠合柱抗震性能试验研究[J]. 建筑结构学报, 2021, 42(6):108-117.
5 Wu Qing-xiong, She Zhi-min, Yuan Hui-hui, et al. Journal of building structures experimental study on seismic performance of CFST reinforced concrete column with hollow box section[J].Journal of Building Structures, 2021, 42(6): 108-117.
6 凌育洪, 温新贵, 郑文丽,等. 新型叠合柱-混凝土梁边节点的受力性能试验研究[J]. 华南理工大学学报:自然科学版, 2022, 50(1): 38-49.
6 Ling Yu-hong, Wen Xin-gui, Zheng Wen-li, et al. Experimental study on mechanical behavior of new type side joint of CFST composite column-concrete beam[J]. Journal of South China University of Technology(Natural science Edition), 2022, 50(1): 38-49.
7 徐蕾, 刘玉彬. 钢管混凝土叠合柱耐火性能研究[J]. 建筑结构学报, 2014, 35(6): 33-41.
7 Xu Lei, Liu Yu-bin. Research on fire resistance of CFSTRC columns subjected to fire[J]. Journal of Building Structures,2014, 35(6): 33-41.
8 项凯, 王国辉. 轴心受压方形截面钢管混凝土叠合柱耐火性能[J]. 西南交通大学学报, 2014, 49(5): 779-786.
8 Xiang Kai, Wang Guo-hui. Fire resistance performance of concrete-filled steel tube RC square columns under axial loading[J]. Journal of Southwest Jiaotong University, 2014, 49(5): 779-786.
9 Ji X, Zhang M, Kang H, et al. Effect of cumulative seismic damage to steel tube-reinforced concrete composite columns[J]. Earthquakes and Structures, 2014, 7(2): 179-199.
10 黄玉琼. 采用法兰螺栓连接的预制拼装CFST桥墩抗推性能研究[D]. 重庆: 重庆交通大学土木工程学院, 2022.
10 Huang Yu-qiong. Research on the thrust resistance of precast assembled CFST pier connected by flange bolts[D]. Chongqing: School of Civil Engineering,Chongqing Jiaotong University, 2022.
11 陈前, 张凯旋, 郭勇,等. 钢管填充混凝土对内外法兰节点抗弯承载力特性影响研究[J]. 建筑结构, 2021, 51(2): 71-77.
11 Chen Qian, Zhang Kai-xuan, Guo Yong, et al. Study on the influence of concrete filled steel tube on the flexural bearing capacity of inner and outer flange joints[J]. Building Structure,2021, 51(2): 71-77.
12 王文达, 易练波, 范家浩. 中空夹层圆钢管混凝土构件内外法兰连接受弯性能分析[J]. 建筑科学与工程学报, 2020, 37(4): 42-51.
12 Wang Wen-da, Yi Lian-bo, Fan Jia-hao. Analysis of bending performance of inner and outer flange connections of circular concrete-filled double skin steel tubular member[J]. Journal of Architecture and Civil Engineering, 2020, 37(4): 42-51.
13 黄誉, 邓洪洲, 金晓华. 钢管杆塔新型内外法兰受弯性能试验研究及有限元分析[J]. 建筑结构学报, 2011, 32(10): 73-81.
13 Huang Yu, Deng Hong-zhou, Jin Xiao-hua. Experimental research and finite element analysis on flexural performance of innovative flange joint used in steel poles[J]. Journal of Building Structures, 2011, 32(10): 73-81.
14 王军, 陈驹. 连接方式对内配格构式角钢圆钢管混凝土构件轴拉性能的影响[J]. 建筑结构学报, 2019, 40(): 354-361.
14 Wang Jun, Chen Ju. Influence of connection modes on axial tensile properties of concrete-filled circular steel tubes with latticed angle steels inside[J]. Journal of Building Structures, 2019, 40(Sup.1): 354-361.
15 Shehab B A, Ekmekyapar T. Axial compression behaviour of bolted-flange composite column-column connection [J]. Proceedings of the Institution of Civil Engineers-Structures and Buildings, 2022, 175(11): 877-879.
16 杨红, 余依瑾, 康乐,等. 法兰连接钢管混凝土柱-钢梁外加强环节点受力性能研究[J]. 建筑结构学报, 2022, 43(2): 157-172.
16 Yang Hong, Yu Yi-jin, Kang Le, et al. Study on mechanical behavior of flange-connected CFST column-steel beam joint with external stiffening ring plate[J]. Journal of Building Structures, 2022, 43(2): 157-172.
17 骆韦. 高层建筑钢管混凝土柱新型节点的试验研究及有限元分析[D]. 广州: 华南理工大学土木与交通学院, 1999.
17 Luo Wei. Experimental study and finite element analysis of new CFST column joint for high-rise buildings[D]. Guangzhou: School of Civil Engineering and Transport South China University of Technology, 1999.
18 华南理工大学. 钢管高强混凝土柱节点及其制造方法[P].中国专利: CN99116170.X, 2000-01-26.
19 邹剑强,陆勇,谷鹏,等.一种预制实心钢管混凝土构件接长节点[P].中国专利:ZL 202021237369.1,2020-06-30.
20 .高耸结构设计标准 [S].
21 .门式刚架轻型房屋钢结构技术规范 [S].
22 .钢管混凝土工程施工质量验收规范 [S].
23 刘学春, 王丹, 张爱林,等. 法兰连接L形钢管混凝土柱-H型钢梁全螺栓节点抗震性能研究[J]. 建筑结构学报, 2021, 42(): 98-109.
23 Liu Xue-chun, Wang Dan, Zhang Ai-lin, et al. Study on seismic performance of a full bolted-assembly connection for flange-connected L-shaped CFST column and H-shaped steel beam[J]. Journal of Building Structures, 2021, 42(Sup.1):98-109.
24 童根树. 钢结构与钢-混凝土组合结构设计方法[M]. 北京: 中国建筑工业出版社, 2022.
25 韩林海, 陶忠. 方钢管混凝土轴压力学性能的理论分析与试验研究[J]. 土木工程学报, 2001(2): 17-25.
25 Han Lin-hai, Tao Zhong. Study on behavior of concrete filled square steel tubes under axial load[J]. China Civil Engineering Journal, 2001(2): 17-25.
26 刘威. 钢管混凝土局部受压时的工作机理研究[D]. 福州: 福州大学土木工程学院, 2005.
26 Liu Wei. research on mechanism of concrete-filled steel tubes subjected to local compression[D]. Fuzhou: College of Civil Engineering, Fuzhou University, 2005.
27 .混凝土结构设计规范 [S].
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!