吉林大学学报(工学版) ›› 2003, Vol. ›› Issue (3): 92-95.

• 论文 • 上一篇    下一篇

质量控制界限及其优化

陈德安, 唐万生, 李光泉   

  1. 天津大学, 管理学院, 天津 300072
  • 收稿日期:2002-11-28

Optimization of control limits of control charts in quality control

CHEN De-an, TANG Wan-sheng, LI Guang-quan   

  1. College of Management, Tianjin University, Tianjin 300072, China
  • Received:2002-11-28

摘要: x- R控制图为例,针对现行质量控制中以x±3σ作为控制图控制界限的方法,通过分析控制图控制界限(Kσ)与两类错误(αβ)发生的概率及损失费用,提出了最优控制界限的观点。建立了两类错误损失费用的数学模型,给出了主要研究过程和最优控制界限(K)的算式。并通过实例对其优化结果和现行"x±3σ"法的结果进行了比较和分析,说明了本文提出的方法的优化性。在此基础上,对其结果的一般性和优化性做了近一步的讨论和推广。

关键词: 质量控制图, 第一类错误(α), 控制界限, 第二类错误(β)

Abstract: Being aimed at the method which taken "x±3σ" as the control limits of control charts in quality control,took the x-R control charts for an example,a new opinion of the optical limits was pointed out through the analysis of the variation between the control limits of control charts () and the probabilities as well as the costs of the two types of the errors (α and β).We established a mathematical model for its costs,gave out the major parts of the researching process and the optical formula for the control limits of control charts (K),and made a further discussion and extension for the generalization as well as the advantages of its results by the comparison with the results with x±3σ method.

Key words: quality control charts, the first type of error (α), control limits, the second type of error (β)

中图分类号: 

  • C931.1
[1] 中国质量管理协会培训教育部.质量管理学(第二分册)[M].北京:企业管理出版社,1986:160-163.
[2] 黄兆骝.控制图控制界限的讨论[J].质量管理,1985,6:15-17.
[3] 刘长庚,周兆英,赵晓波,等.生产系统中质量控制问题的最优化[J].清华大学学报(自然科学版),2000,20(5):54-57.
[4] REYNOLD M R,AMIN R W,AYNOLD JC,et al.X-charts with variable sampling intervals[J],Technomertrics,1988,30(2):181-192.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!