吉林大学学报(工学版) ›› 2012, Vol. 42 ›› Issue (02): 397-402.

• 论文 • 上一篇    下一篇

基于分形理论的纤维材料微粒捕集器捕集效率模型

尚涛1,2, 李涛1, 刘先黎2, 任露泉2   

  1. 1. 吉林大学 机械科学与工程学院, 长春 130022;
    2. 吉林大学 工程仿生教育部重点实验室, 长春 130022
  • 收稿日期:2011-01-10 出版日期:2012-03-01 发布日期:2012-03-01
  • 通讯作者: 任露泉(1944-),男,教授,博士生导师,中国科学院院士.研究方向:工程仿生学.E-mail:lqren@jlu.edu.cn E-mail:lqren@jlu.edu.cn
  • 作者简介:尚涛(1968-),男,副教授,博士.研究方向:仿生耦合机理与应用技术.E-mail:shangtao@jlu.edu.cn
  • 基金资助:

    国家自然科学基金重点项目(50635030).

Trapping efficiency model of fibrous DPF based on fractal theory

SHANG Tao1,2, LI Tao1, LIU Xian-li2, REN Lu-quan2   

  1. 1. College of Mechanical Science and Engineering, Jilin University, Changchun 130022, China;
    2. Key Laboratory of Engineering Bionics, Ministry of Education, Jilin University, Changchun 130022, China
  • Received:2011-01-10 Online:2012-03-01 Published:2012-03-01

摘要: 针对柴油机尾气微粒的分形特性,基于分形理论建立了纤维材料对尾气微粒的过滤效率数学模型,并证明了模型的正确性。应用该模型分析了纤维材料作为微粒捕集器过滤材料时的过滤机理、过滤效率和压降特性,研究了微粒分维数对过滤效率的影响。计算结果表明,柴油机尾气微粒的主要捕集机理为扩散和直接拦截,惯性机理的作用很小。纤维过滤材料对粒径为200~400 nm的尾气微粒的捕集效率最低,为了提高这一尺寸范围微粒的过滤效率,应降低过滤流速、提高过滤温度以提高扩散机理的作用,并且减小过滤材料纤维直径、提高填充密度以提高直接拦截机理的作用。综合考虑材料捕集效率和压降,应尽量减小填充密度以降低压降,缩小材料纤维直径以提高捕集效率。

关键词: 环境工程学, 过滤理论, 微粒捕集器, 纤维过滤材料, 尾气微粒, 分形理论

Abstract: In connection with the fact that the diesel engine exhaust particulate is characterized by the fractal feature, a mathematical model was built for the trapping efficiency of the fibrous diesel particulate filter (DPF) based on fractal theory, and its correctness was proved. The filtering mechanism, the trapping efficiency, and the pressure drop across the filtering element were analyzed using the fibrous material as DPF element material, and the effect of the particulate fractal dimension on the trapping efficiency was studied. The calculation results showed that the main filtration mechanism of the fibrous DPF are diffusion trapping and direct interception, the role of the inertial trapping is very small. The fibrous filter material appears least efficient in trapping the diesel particulate with size of 200~400 nm. To improve the trapping efficiency in this size range, the filter flow velocity should be reduced, and the filter temperature should be raised to enhance the diffusion trapping mechanism, and the filtering fiber diameter should be reduced, the fiber filling density should be raised to enhance the interception trapping mechanism. Comprehensive considering the trapping efficiency and the pressure drop, it can be concluded that the fiber filling density should be reduced to reduce the pressure drop and the filtering fiber diameter should be reduced to raise the trapping efficiency.

Key words: environment engineering, filtration theory, diesel particulate filter, fibrous filter material, diesel exhaust particles, fractal theory

中图分类号: 

  • TK421.5
[1] Cho Y S,Kim D S,Park Y J.Pressure drop and heat transfer of catalyzed diesel particulate filters due to changes in soot loading and flow rate[J].International Journal of Automotive Technology,2008,9(4):391-396.

[2] Masoudi Mansour.Pressure drop of segmented diesel particulate filters[J].SAE 2005-01-0971.

[3] Gaiser Gerd,Mucha Patrick,Hermann Lorenz,et al.A new design concept for metallic diesel particulate filter substrates[J].SAE 2007-01-0655.

[4] Brillant Steven,Zikoridse Gennadi.Metal fibre diesel particulate filter: function and technology[J].SAE International,2005-01-0580.

[5] Haberkamp W C,Bedeau K M,LiuZ G, et al.Design, development and performance of a composite diesel particulate filter[J].SAE 2002-01-0323.

[6] Gulijk C Van,Marijnissen J C M,Makkee M, et al.Measuring diesel soot with a scanning mobility particle sizer and an electrical low-pressure impactor:performance assessment with a model for fractal-like agglomerates[J].Aerosol Science,2004,35:633-655.

[7] 保罗A 巴伦,克劳斯 维勒克.气溶胶测量、原理技术及应用[M].白志鹏译.北京:化学工业出版社,2007.

[8] Anna Baazy,Albert Podgórski.Deposition efficiency of fractal-like aggregates in fibrous filters calculated using Brownian dynamics method[J].Journal of Colloid and Interface Science,2007,311:323-337.

[9] Schmidt-Ott.Use of a low-pressure impactor for fractal analysis of submicron particles[J].Aerosol Science,1990,21:S47-S50.

[10] Wang G M,Sorensen C M.Diffusive mobility of fractal aggregates over the entire knudsen number range[J].Physical Review E,1999,60(3):3036-3044.

[11] Lattuada Marco,Wu Hua,Morbidelli Massimo,et al.A simple model for the structure of fractal aggregates[J].Colloid and Interface Science,2003,268:106-120.

[12] Gmachowski L.Mechanism of shear ggregation[J].Water Research,1996,29:1815-1820.

[13] 克莱德·奥尔.过滤理论与实践[M].邵启祥译.北京:国防工业出版社,1982.

[14] Kubo Shuichi,Kurazono Koichi,Hayashi Hidumitsu, et al.Particle filtration mechanism in diesel particulate filter[J].The Japan Society of Mechanical Engineers,2006,72:21-26.
[1] 李志军, 汪昊, 何丽, 曹丽娟, 张玉池, 赵新顺. 催化型微粒捕集器碳烟分布及其影响因素[J]. 吉林大学学报(工学版), 2018, 48(5): 1466-1474.
[2] 李志军, 何丽, 姜瑞, 申博玺, 孔祥金, 刘世宇. 柴油机微粒捕集器灰分分布对其压降的影响评价[J]. 吉林大学学报(工学版), 2017, 47(6): 1760-1766.
[3] 李志军, 王楠, 张立强, 黄群锦, 魏所库, 张彦科. 柴油机微粒捕集器非对称孔道内流场和压降特性模拟[J]. 吉林大学学报(工学版), 2016, 46(6): 1892-1899.
[4] 孙万臣, 刘高, 郭亮, 杜家坤, 肖森林, 李国良. 微粒捕集器对高压共轨柴油机超细微粒捕集特性[J]. 吉林大学学报(工学版), 2016, 46(1): 133-139.
[5] 王丹, 刘忠长, 王忠恕, 刘江唯, 张建瑞. 柴油机微粒捕集器缸内次后喷主动再生方法 [J]. , 2012, (03): 551-556.
[6] 王继新, 季景方, 张英爽, 王乃祥, 章二平, 黄建兵. 基于小波分形理论的工程车辆时域载荷信号降噪方法[J]. 吉林大学学报(工学版), 2011, 41(增刊2): 221-225.
[7] 尚涛, 李涛, 刘先黎, 任露泉. 仿生自清洁金属纤维过滤材料[J]. 吉林大学学报(工学版), 2011, 41(增刊1): 168-172.
[8] 王丽丽1,2, 杨印生1,3, 王忠江2. 北方大型沼气工程加热保温系统优化[J]. 吉林大学学报(工学版), 2011, 41(4): 1183-1188.
[9] 田径, 韩永强, 刘忠长, 李骏, 李康. 柴油机燃油催化微粒后处理器性能与再生[J]. 吉林大学学报(工学版), 2011, 41(01): 18-0023.
[10] 彭举威, 韩相奎, 康春莉, 赵新桐. 进水方式对厌氧折流板反应器运行效果的影响[J]. 吉林大学学报(工学版), 2010, 40(02): 592-0596.
[11] 张凤君,刘佳泓,马玖彤,回进 . 淀粉基可生物降解载体在同步
硝化反硝化中的应用
[J]. 吉林大学学报(工学版), 2008, 38(02): 319-0322.
[12] 刘善培,王启山,樊雪红,耿天甲,韩宏大,吴立波 . 华北地区微污染水的气浮和沉淀工艺处理[J]. 吉林大学学报(工学版), 2008, 38(01): 245-248.
[13] 杨忠振,崔丛 . 基于神经网络的道路交通污染物浓度预测[J]. 吉林大学学报(工学版), 2007, 37(03): 705-0708.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!