›› 2012, Vol. ›› Issue (03): 629-633.

• 论文 • 上一篇    下一篇

沥青混合料黏弹性参数的改进识别

程永春, 郭庆林, 谭国金   

  1. 吉林大学 交通学院, 长春 130022
  • 收稿日期:2011-04-14 出版日期:2012-05-01
  • 通讯作者: 谭国金(1981-),男,讲师.研究方向:车辆-桥梁耦合振动力学.E-mail:tgj@jlu.edu.cn E-mail:tgj@jlu.edu.cn
  • 基金资助:
    "863"国家高技术研究发展计划项目(2009AA11Z104);吉林大学创新团队项目(2009-10);吉林大学"985"工程项目;吉林大学科学前沿与交叉学科创新项目(201003040).

Improved viscoelastic parameter identification for asphalt mixture

CHENG Yong-chun, GUO Qing-lin, TAN Guo-jin   

  1. College of Transportation, Jilin University, Changchun 130022, China
  • Received:2011-04-14 Online:2012-05-01

摘要: 伯格斯(Burgers)模型已被广泛用于分析沥青混合料黏弹性蠕变性能,但模型参数识别时,分段时刻的确定还存在主观性较强等缺点。针对沥青混合料伯格斯模型参数的识别问题,从伯格斯模型参数识别的原理出发,提出了一种最优时域分段识别方法。基于最小识别残差平方和原则,确定了伯格斯模型参数分段识别的最优分段时刻。通过理论推导与试验验证该方法具有普遍的适用性和稳定性,同时识别精度更高,可以准确识别沥青混合料的黏弹性模型参数,进而可以更精确地评价沥青混合料的蠕变变形性能。

关键词: 道路工程, 沥青混合料, 伯格斯模型, 最优分段原理, 参数识别, 可靠性

Abstract: Though Burgers model has been widely used to analyze viscoelastic creep properties of asphalt mixture, there are some disadvantages such as subjective determining time segmentations for parameters identification of the model. An optimum time segmentation identification method for Burgers model was proposed in this paper. The optimum time segmentations were determined according to the principle of least residual sum of squares. Its stability and versatility were verified by theoretical analysis and experimental test. The parameters of Burgers model can be identified more accurately by this method. It will be helpful to predict the viscoelastic deformation more accurately and evaluate creep performance of asphalt pavement.

Key words: highway engineering, asphalt mixture, Burgers model, optimum time segmentation, parameter identification, reliability

中图分类号: 

  • U416.217
[1] Bugers J M. Mechanical consideration-model systems phenomendogical theories of relation and of viscosity. NewYork:First Report on Viscosity and Plasticity Nordeman Publishing Company,1935.
[2] Liu Shu-tang, Cao Wei-dong, Shang Shu-jie, et al. Analysis and application of relationships between low-temperature rheological performance parameters of asphalt binders[J]. Constr Build Mater,2010,24(4):471-478.
[3] 张肖宁. 沥青与沥青混合料的粘弹力学原理及应用[M]. 北京:人民交通出版社,2006.
[4] 程永春,许淳,梁春雨,等. 沥青混合料蠕变柔量的试验研究与力学解析[J]. 吉林大学学报:工学版,2008,38(增刊2):70-73. Cheng Yong-chun, Xu Chun, Liang Chun-yu, et al. Experimental study and mechanical analysis on the creep of the asphalt mixture[J]. Journal of Jilin University (Engineering and Technology Edition), 2008, 38(Sup.2):70-73.
[5] 黄卫东,吕伟民. 用流变模型评价改性沥青及其混合料的高温性能[J]. 石油沥青,1997,11(2):1-5. Huang Wei-dong, Lü Wei-min. Rheological indexes assess high temperature stability of asphalt binder and asphalt mixture[J]. Petroleum Asphalt,1997,11(2):1-5.
[6] Liu Shu-tang, Ma Cheng, Cao Wei-dong, et al. Influence of aluminate coupling agent on low-temperature rheological performance of asphalt mastic[J]. Construction and Building Materials,2010,24(5):650-659.
[7] Liu Yu, Feng Shi-rong, Hu Xia-guang. Discrete element simulation of asphalt mastics based on burgers model[J]. Jounal of Southwest Jiaotong University (English Edition),2007,15(1):20-26.
[8] 陈静云, 周长红, 王哲人. 沥青混合料蠕变试验数据处理与粘弹性计算[J]. 东南大学学报:自然科学版,2007,37(6):1091-1095. Chen Jing-yun, Zhou Chang-hong, Wang Zhe-ren. Data processing and viscoelastic computation for creep test of asphalt mixture[J]. Journal of Southeast University (Natural Science Edition),2007,37(6):1091-1095.
[9] Liu Yu, You Zhan-ping. Determining burger's model parameters of asphalt materials using creep-recovery testing data[C]//Proceedings of the Symposium on Pavement Mechanics and Materials at the Inaugural International Conference of the Engineering Mechanics Institute,2008:26-36.
[10] 田莉,胡霞光,刘玉,等. 沥青玛蹄脂粘弹性模型参数分段线性拟合法[J]. 交通运输工程学报,2007,7(3):66-69. Tian Li, Hu Xia-guang, Liu Yu, et al. Sectioned linear fitting method of parameters for asphalt mastics viscoelastic Burgers model[J]. Journa1 of Traffic and Transportation Engineering,2007,7(3):66-69.
[11] 朱珉仁. Gompertz模型和Logistic模型的拟合[J]. 数学的实践与认识,2002,32(5):705-709. Zhu Min-ren. Fitting gompertz model and logistic model[J]. Mathematics in Practice and Theory,2002,32(5):705-709.
[1] 李伊,刘黎萍,孙立军. 沥青面层不同深度车辙等效温度预估模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1703-1711.
[2] 宋军, 石雪飞, 阮欣. 大体积混凝土热学参数识别的优化[J]. 吉林大学学报(工学版), 2018, 48(5): 1418-1425.
[3] 臧国帅, 孙立军. 基于惰性弯沉点的刚性下卧层深度设置方法[J]. 吉林大学学报(工学版), 2018, 48(4): 1037-1044.
[4] 念腾飞, 李萍, 林梅. 冻融循环下沥青特征官能团含量与流变参数灰熵分析及微观形貌[J]. 吉林大学学报(工学版), 2018, 48(4): 1045-1054.
[5] 宫亚峰, 申杨凡, 谭国金, 韩春鹏, 何钰龙. 不同孔隙率下纤维土无侧限抗压强度[J]. 吉林大学学报(工学版), 2018, 48(3): 712-719.
[6] 程永春, 毕海鹏, 马桂荣, 宫亚峰, 田振宏, 吕泽华, 徐志枢. 纳米TiO2/CaCO3-玄武岩纤维复合改性沥青的路用性能[J]. 吉林大学学报(工学版), 2018, 48(2): 460-465.
[7] 张仰鹏, 魏海斌, 贾江坤, 陈昭. 季冻区组合冷阻层应用表现的数值评价[J]. 吉林大学学报(工学版), 2018, 48(1): 121-126.
[8] 季文玉, 李旺旺, 过民龙, 王珏. 预应力RPC-NC叠合梁挠度试验及计算方法[J]. 吉林大学学报(工学版), 2018, 48(1): 129-136.
[9] 马晔, 尼颖升, 徐栋, 刁波. 基于空间网格模型分析的体外预应力加固[J]. 吉林大学学报(工学版), 2018, 48(1): 137-147.
[10] 罗蓉, 曾哲, 张德润, 冯光乐, 董华均. 基于插板法膜压力模型的沥青混合料水稳定性评价[J]. 吉林大学学报(工学版), 2017, 47(6): 1753-1759.
[11] 于繁华, 刘仁云, 张义民, 张晓丽, 孙秋成. 机械零部件动态可靠性稳健优化设计的群智能算法[J]. 吉林大学学报(工学版), 2017, 47(6): 1903-1908.
[12] 杨越东, 陈吉清, 兰凤崇, 周云郊. 基于焊点参数识别的白车身动态特性[J]. 吉林大学学报(工学版), 2017, 47(5): 1379-1386.
[13] 尼颖升, 马晔, 徐栋, 李金凯. 波纹钢腹板斜拉桥剪力滞效应空间网格分析方法[J]. 吉林大学学报(工学版), 2017, 47(5): 1453-1464.
[14] 郑传峰, 马壮, 郭学东, 张婷, 吕丹, 秦泳. 矿粉宏细观特征耦合对沥青胶浆低温性能的影响[J]. 吉林大学学报(工学版), 2017, 47(5): 1465-1471.
[15] 于天来, 郑彬双, 李海生, 唐泽睿, 赵云鹏. 钢塑复合筋带挡土墙病害及成因[J]. 吉林大学学报(工学版), 2017, 47(4): 1082-1093.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!