›› 2012, Vol. 42 ›› Issue (05): 1251-1256.

• 论文 • 上一篇    下一篇

用于异常检测的免疫实值检测器优化生成算法

柴争义1,2, 吴慧欣3, 吴勇1   

  1. 1. 河南工业大学 信息科学与工程学院,郑州 450001;
    2. 西安电子科技大学 计算机学院,西安 710071;
    3. 华北水利水电学院 信息工程学院,郑州 450001
  • 收稿日期:2011-04-20 出版日期:2012-09-01 发布日期:2012-09-01
  • 基金资助:
    "863"国家高技术研究发展计划项目(2009AA12Z210);国家自然科学基金项目(61001202,61003199,61072139);高等学校博士学科点专项科研基金项目(20090203120016,20100203120008).

Optimization algorithm for immune real-value detector generation

CHAI Zheng-yi1,2, WU Hui-xin3, WU-Yong1   

  1. 1. School of Information Science and Engineering, Hennan University of Technology, Zhengzhou 450001,China;
    2. School of Computer Science and Technology, Xidian University, Xi'an 710071, China;
    3. Department of Information Engineering, North China University of Water Conservancy & Electric Power, Zhengzhou 450001,China
  • Received:2011-04-20 Online:2012-09-01 Published:2012-09-01

摘要: 针对已有实值可变半径检测器生成算法的不足,提出一种优化的检测器生成算法。通过对检测器生成过程的统计分析,给出了基于假设检验的检测器生成过程,并将假设检验的结果作为算法结束的一个控制参数,有效减少了冗余检测器的产生。同时,算法充分利用自体空间的分布,优化检测器生成的中心位置,扩大检测器的半径,尽可能生成覆盖范围大的检测器,提高检测性能。通过人工合成数据集2DSyntheticData以及实际的Iris数据集和Biomedical数据集对算法进行了验证。实验结果表明,本算法用于异常数据检测,提高了检测率,所需的检测器数量减少,整体检测性能较优。

关键词: 计算机系统结构, 假设检验, 否定选择算法, 检测器, 异常检测, 检测性能

Abstract: A new optimized detector generation algorithm is proposed to overcome the shortcomings of available real-value variable-radius detector generation algorithms. By statistic analysis of the detector generation, a hypothesis testing based detector generation process is proposed. The result of the hypothesis testing is taken as one of the control parameters to end the algorithm, thus, it can effectively avoid the generation of redundant detectors. Meanwhile, the algorithm makes full use of the distribution of self-space, optimizes the center position and expands the radius of the detectors in order to generate the detector with large coverage. The 2DSyntheticData, the actual Irish data set and biomedical data set are used to test the algorithm. Experiment results show that the algorithm performs very well that it improves the detection rate, reduces the number of required detectors.

Key words: computer systems organization, hypothesis testing, negative selection algorithm, detector, anomaly detection, detection performance

中图分类号: 

  • TP18
[1] 柴争义,王献荣,王亮.用于异常检测的实值否定选择算法[J].吉林大学学报:工学版,2012,42(1):176-181. Chai Zheng-yi, Wang Xian-rong, Wang Liang. Real-value negative selection algorithm for anomaly detection[J]. Journal of Jilin University(Engineering and Technology Edition),2012,42(1):176-181.
[2] Bereta M, Burczy'nski T. Comparing binary and real-valued coding in hybrid immune algorithm for feature selection and classification of ECG signals[J].Engineering Applications of Artificial Intelligence, 2008,20(5):571-585.
[3] Gonzalez F, Dasgupta D, Nino L F. A randomized real-valued negative selection algorithm//ICARIS 2003, Edinburgh, UK, 2007: 376-383.
[4] Zhang Feng-bin, Wang Da-wei, Wang Sheng-wen. A self region based real-valued negative selection algorithm[J].Journal of Harbin Institute of Technology, 2009,15(6):851-855.
[5] Zhou Ji, Dasgupta D. Real-valued negative selection algorithm with variable-sized detectors//Proceedings of GECCO, LNCS 3102. Berlin: Springer, 2008: 287-298.
[6] Chmielewski A, Wierzcho S T. V-detector algorithm with tree-based structures//Proccedings of the International Conference on Computer Science and Information Technology. Wisa, Poland, 2009:9-14.
[7] Zeng Jin-quan, Liu Xiao-jie, Li Tao. A self-adaptive negative selection algorithm used for anomaly detection[J].Progress in Natural Science,2009,19(2),261-266.
[8] Wang Yu-jian, Luo Wen-jian. PTS-RNSA: A novel detector generation algorithm for real-valued negative selection algorithm//2010 International Joint Conference on Bioinformatics, Systems Biology and Intelligent Computing.USA,IEEE Press, 2010:61-66.
[9] Balachandran S, Dasgupta D, Nino L F, et al. A general framework for evolving multi-shaped detectors in negative selection//Proc of the 2009 IEEE Symposium Series on Foundations of Computational Intelligence, FOCI-2008. Honolulu, Hawaii, 2009:401-408.
[10] Zhou Ji, Dasgupta D. An efficient negative selection algorithm with probably adequate detector coverage[J].Information Sciences, 2009,17(9):1390-1406.
[11] 盛骤,谢式千,潘承毅.概率论与数理统计[M].北京:高等教育出版社,2005.
[12] 史宁中.统计检验的理论与方法[M].北京:科学出版社,2010.
[13] Columbia University. 2DSyntheticData.. http://www. zhouji. net/prof/2DSyntheticData.zip.
[14] StatLib Datasets Archive. http://lib.stat.cmu.edu//dataset. 2010-04-12.
[15] 刘大有,谷方明,王生生.基于人工免疫核聚类的支持向量数据描述方法[J].吉林大学学报:工学版,2011,41(5):1369-1373. Liu Da-you, Gu Fang-ming, Wang Sheng-sheng. Support vector data description based on artificial immune kernel clustering[J].Journal of Jilin University(Engineering and Technology Edition),2011,41(5):1369-1373.
[1] 余宜诚, 胡亮, 迟令, 初剑峰. 一种改进的适用于多服务器架构的匿名认证协议[J]. 吉林大学学报(工学版), 2018, 48(5): 1586-1592.
[2] 董坚峰, 张玉峰, 戴志强. 改进的基于狄利克雷混合模型的推荐算法[J]. 吉林大学学报(工学版), 2018, 48(2): 596-604.
[3] 赵博, 秦贵和, 赵永哲, 杨文迪. 基于半陷门单向函数的公钥密码[J]. 吉林大学学报(工学版), 2018, 48(1): 259-267.
[4] 刘磊, 刘利娟, 吴新维, 张鹏. 基于ECPMR的编译器测试方法[J]. 吉林大学学报(工学版), 2017, 47(4): 1262-1267.
[5] 董立岩, 王越群, 贺嘉楠, 孙铭会, 李永丽. 基于时间衰减的协同过滤推荐算法[J]. 吉林大学学报(工学版), 2017, 47(4): 1268-1272.
[6] 于斌斌, 武欣雨, 初剑峰, 胡亮. 基于群密钥协商的无线传感器网络签名协议[J]. 吉林大学学报(工学版), 2017, 47(3): 924-929.
[7] 邓昌义, 郭锐锋, 张忆文, 王鸿亮. 基于平衡因子的动态偶发任务低功耗调度算法[J]. 吉林大学学报(工学版), 2017, 47(2): 591-600.
[8] 魏晓辉, 刘智亮, 庄园, 李洪亮, 李翔. 支持大规模流数据在线处理的自适应检查点机制[J]. 吉林大学学报(工学版), 2017, 47(1): 199-207.
[9] 郝娉婷, 胡亮, 姜婧妍, 车喜龙. 基于多管理节点的乐观锁协议[J]. 吉林大学学报(工学版), 2017, 47(1): 227-234.
[10] 魏晓辉, 李翔, 李洪亮, 李聪, 庄园, 于洪梅. 支持大规模流数据处理的弹性在线MapReduce模型及拓扑协议[J]. 吉林大学学报(工学版), 2016, 46(4): 1222-1231.
[11] 于赫, 秦贵和, 孙铭会, 闫鑫, 王璇喆. 车载CAN总线网络安全问题及异常检测方法[J]. 吉林大学学报(工学版), 2016, 46(4): 1246-1253.
[12] 车翔玖, 梁森. 一种基于大顶堆的SPIHT改进算法[J]. 吉林大学学报(工学版), 2016, 46(3): 865-869.
[13] 郭立民, 冯凯. 非均匀噪声下基于BOOTSTRAP和特征空间投影的信源数估计[J]. 吉林大学学报(工学版), 2015, 45(5): 1724-1730.
[14] 董悦丽, 郭权, 孙斌, 康玲. 药物分子对接动态任务迁移优化[J]. 吉林大学学报(工学版), 2015, 45(4): 1253-1259.
[15] 匡哲君,师唯佳,胡亮. 基于无线传感器网络的角色成员关系剩余能量新算法[J]. 吉林大学学报(工学版), 2015, 45(2): 600-605.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!