吉林大学学报(工学版) ›› 2013, Vol. 43 ›› Issue (01): 28-33.

• 论文 • 上一篇    下一篇

基于解析法的轴对称非球面加工机床运动创成

张雷1, 黄志东1,2, 赵继1   

  1. 1. 吉林大学 机械科学与工程学院, 长春 130022;
    2. 辽宁科技学院 机械工程学院, 辽宁 本溪 117004
  • 收稿日期:2012-02-19 出版日期:2013-01-01 发布日期:2013-01-01
  • 作者简介:张雷(1970-),男,教授,博士生导师.研究方向:智能精密制造.E-mail:profzhanglei@yahoo.com.cn
  • 基金资助:

    "973"国家重点基础研究发展计划项目(2011CB706702);吉林大学研究生创新基金项目(20121078).

Motion generation for machining axisymmetric aspheric surface based on analysis method

ZHANG Lei1, HUANG Zhi-dong1,2, ZHAO Ji1   

  1. 1. College of Mechanical Science and Engineering, Jilin University, Changchun 130022, China;
    2. Department of Mechanical Engineering, Liaoning Institute of Science and Technology, Benxi 117004, China
  • Received:2012-02-19 Online:2013-01-01 Published:2013-01-01

摘要: 提出了一种新的机床设计方法。从轴对称非球面构型特征出发,解析刀具与工件的位姿关系。建立刀具相对于工件的位姿矩阵,提出所需的运动单元,创成加工轴对称非球面机床运动功能方案。优化设计结果,并给出对应运动结构式的机床结构布局图,实现了轴对称非球面加工机床创新设计。

关键词: 机床, 轴对称非球面, 运动创成, 位姿矩阵

Abstract: An innovative design method of the machine tool for manufacturing axisymmetric asphere was put forward. Based on the configuration charactersitic of axisymmetric asphere surface, the relationship of position and orientation between the tool and the workpiece was analyzed. The matrix of position and orientation of the tool relative to the workpiece was set up. The requcired motion units were proposed and the motion function scheme of the machine tool for manufacturing the axisymmetric asphere surface was generated. The design results were optimized and the structure configuration of the machine tool was obtained according to the expressions of motion structure.

Key words: machine tool, axisymmetric aspheric surface, motion generation, matrix of position and orientation

中图分类号: 

  • TG502.12
[1] 陈钦芳, 徐昌杰. 轴对称非球面透镜光轴共轴度的测量研究[J]. 应用光学,2008,29(6): 870-873. Chen Qin-fang, Xu Chang-jie. Coaxial measurement of axisymmetric aspheric lens[J]. Journal of Applied Optics,2008,29(6):870-873.

[2] 张广鹏, 黄玉美, 刘永超, 等. 机床运动功能方案的创成式设计方法[J]. 组合机床与自动化加工技术,1999,43(2):38-41. Zhang Guang-peng, Huang Yu-mei, Liu Yong-chao, et al. Generative design method on the movement function schemes of the machine tool[J]. Modular Machine Tool & Automatic Manufacturing Technique, 1999,43(2):38-41.

[3] 张广鹏, 黄玉美, 苏菊宁, 等. 基于解析方法的机床运动创成[J]. 西安理工大学学报,1998,14(3):242-246. Zhang Guang-peng, Huang Yu-mei, Su Ju-ning, et al. Machine tools motion generating based on analysis method[J]. Journal of Xi'an University of Technology,1998,14(3):242-246.

[4] 廖德岗, 熊晓红. 非圆等宽截型零件的车铣加工运动设计[J]. 制造技术与机床,2003 (10):40-41. Liao De-gang, Xiong Xiao-hong. Motion design for turning and milling of non-circular parts with equal section width[J]. Manufacturing Technology & Machine Tool, 2003(10):40-41.

[5] 廖德岗, 车晓毅, 蔡悦华. 异型柱面车铣组合加工机床运动功能创成研究[J]. 长沙电力学院学报:自然科学版, 2005,20(2):89-92. Liao De-gang, Che Xiao-yi, Cai Yue-hua. Research on the formation of movement for irregular cylinder NC turning and milling[J]. Journal of Changsha University of Electric Power (Natural Science Edition), 2005,20(2):89-92.

[6] Saeki M, Kuriyagawa T, Lee J S, et al. Machining of aspherical opto-device utilizing parallel grinding method//ASPE Annual, 2001:433-436.

[7] Chen W K, Kuriyagawa T, Huang H, et al. Machining of micro aspherical mould inserts[J]. Precision Engineering,2005, 29(3):315-323.

[8] Kuriyagawa T, Zahmaty M S S, Syoji K. A new grinding method for aspheric ceramic mirrors[J]. Journal of Materials Processing Technology, 1996, 62(4):387-392.

[9] Ye Jun-jun, Guo Jiang, Guo Yin-biao. Research on path planning and data processing system for high-precise aspheric measurement//Proc of SPIE, 2007, 6723:1-6.

[10] Xiao M, Jujo S, Takahashi S, et al. Nanometer profile measurement of large aspheric optical surface by scanning deflectometry with rotatable devices:uncertainty propagation analysis and experiments[J]. Precision Engineering,2012, 36(1):91-96.

[11] Chen F J, Yin S H, Huang H, et al. Profile error compensation in ultra-precision grinding of aspheric surfaces with on-machine measurement[J]. International Journal of Machine Tools and Manufacture, 2010, 50(5):480-486.

[12] 潘君骅. 光学非球面的设计、加工与检验[M]. 苏州: 苏州大学出版社,2004.

[13] 蔡自兴. 机器人学[M]. 北京: 清华大学出版社,2009.

[14] Chen F C. On the structural configuration synthesis and geometry of machining centres[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2001, 215(6):641-652.

[15] Tutunea-Fatan O Remus, Feng His-yung. Configuration analysis of five-axis machine tools using a generic kinematic model[J]. International Journal of Machine Tools and Manufacture, 2004, 44(9):1235-1243.
[1] 郑玉彬, 杨斌, 王晓峰, 申桂香, 赵宪卓, 秦猛猛. 基于威布尔分布的电主轴加速寿命试验时间设计[J]. 吉林大学学报(工学版), 2018, 48(3): 767-772.
[2] 申桂香, 曾文彬, 张英芝, 吴茂坤, 郑玉彬. 最小故障率下数控组合机床平均维修时间确定[J]. 吉林大学学报(工学版), 2017, 47(5): 1519-1526.
[3] 曲兴田, 赵永兵, 刘海忠, 王昕, 杨旭, 陈行德. 串并混联机床几何误差建模与实验[J]. 吉林大学学报(工学版), 2017, 47(1): 137-144.
[4] 张英芝, 刘津彤, 申桂香, 戚晓艳, 龙哲. 基于故障相关性分析的数控机床系统可靠性建模[J]. 吉林大学学报(工学版), 2017, 47(1): 169-173.
[5] 孟书, 申桂香, 张英芝, 龙哲, 曾文彬. 基于时间相关的数控机床系统组件更换时间[J]. 吉林大学学报(工学版), 2016, 46(6): 1946-1952.
[6] 李洪洲, 杨兆军, 许彬彬, 王彦鹍, 贾玉辉, 侯超. 数控机床可靠性评估试验周期设计[J]. 吉林大学学报(工学版), 2016, 46(5): 1520-1527.
[7] 王健健, 冯平法, 张建富, 吴志军, 张国斌, 闫培龙. 卡盘定心精度建模及其保持特性与修复方法[J]. 吉林大学学报(工学版), 2016, 46(2): 487-493.
[8] 杨兆军, 杨川贵, 陈菲, 郝庆波, 郑志同, 王松. 基于PSO算法和SVR模型的加工中心可靠性模型参数估计[J]. 吉林大学学报(工学版), 2015, 45(3): 829-836.
[9] 王晓燕,申桂香,张英芝,孙曙光,戚晓艳,荣峰. 基于故障链的复杂系统故障相关系数建模[J]. 吉林大学学报(工学版), 2015, 45(2): 442-447.
[10] 赵帼娟, 张雷, 卢磊, 韩飞飞, 赵继. 四轴抛光平台综合误差建模及分析[J]. 吉林大学学报(工学版), 2014, 44(6): 1676-1683.
[11] 王继利, 杨兆军, 李国发, 朱晓翠. EM算法的多重威布尔可靠性建模[J]. 吉林大学学报(工学版), 2014, 44(4): 1010-1015.
[12] 杨兆军,王继利,李国发,张新戈. 冲压机床可靠性增长的模糊层次分析预测方法[J]. 吉林大学学报(工学版), 2014, 44(3): 686-691.
[13] 杨兆军, 杨川贵, 陈菲, 王东亮, 马帅, 刘博. 基于最小二乘算法和SVDUKF算法的电液伺服加载优化[J]. 吉林大学学报(工学版), 2014, 44(2): 392-397.
[14] 陈传海, 杨兆军, 陈菲, 郝庆波, 许彬彬, 阚英男. 基于Bootstrap-Bayes的加工中心主轴可靠性建模[J]. 吉林大学学报(工学版), 2014, 44(01): 95-100.
[15] 申桂香, 孟书, 张英芝, 戚小艳, 栾兰, 宋琪. 平均秩次法在子系统可靠性建模中的应用[J]. 吉林大学学报(工学版), 2014, 44(01): 101-105.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!