吉林大学学报(工学版) ›› 2013, Vol. 43 ›› Issue (增刊1): 330-334.

• 论文 • 上一篇    下一篇

拓扑模型和特征学习的多摄像机接力跟踪策略

常发亮, 李江宝   

  1. 山东大学 控制科学与工程学院,济南 250061
  • 收稿日期:2012-05-15 发布日期:2013-06-01
  • 作者简介:常发亮(1965-),男,教授,博士生导师.研究方向:机器视觉,模式识别,目标跟踪.E-mail:flchang@sdu.edu.cn
  • 基金资助:

    国家自然科学基金项目(60975025,61273277);山东省自然科学基金项目(ZR2011FM032);教育部留学回国人员科研启动基金项目(20101174);山东省机器人与制造自动化技术重点实验室开放基金项目(20111211).

Multi-camera relay-tracking strategies based on topological model and feature learning

CHANG Fa-liang, LI Jiang-bao   

  1. School of Control Science and Engineering, Shandong University, Jinan 250061, China
  • Received:2012-05-15 Published:2013-06-01

摘要:

为实现复杂大场景下目标跟踪的问题,提出了一种复杂大场景下基于拓扑模型和特征学习的多摄像机调度和目标接力跟踪策略。首先建立摄像机场景地图映射,通过实时背景估计确定目标的交接时刻和交接位置,然后建立多摄像机几何拓扑模型,给出了基于拓扑模型的多摄像机接力目标跟踪调度和交接算法,以及在跟踪过程中的特征学习方法,实现接力摄像机的快速调度和目标交接。实验结果表明,该方法可快速准确的完成多摄像机接力跟踪时的判断调度任务。

关键词: 多摄像机, 目标跟踪, 拓扑模型, 摄像机调度, 特征学习

Abstract:

In a video surveillance network system constructed by multi-cameras,when a target access to one camera's FOV(Field of Vision) from another's,it was a key problem to schedule the cameras correctly and to achieve reliable target handoff.Cameras scheduling and target handoff strategies were proposed based on topological model and feature learning that can be applied to multi-PTZ cameras relay target tracking system in a large and complex scene.First,a scene map model was constructed for Cameras,and a method based on real time background estimation was used to determine the handover time and position.Then a multi-camera geometric topological model was created,and,a scheduling handoff algorithm based on topological model and a feature learning algorithm were proposed to schedule the handover camera quickly and to complete the target handoff.The experimental results show that the proposed method can judge and schedule handover camera quickly and accurately in multi-cameras active tracking.

Key words: multiple camera, target tracking, topological model, camera scheduling, feature learning

中图分类号: 

  • TP391

[1] Bellotto N,sommerlade E,Benfold B.A distributed camera system for multi-resolution surveillance[C]//Third ACM/IEEE International Conference on Distributed Smart Cameras.2009:1-8.

[2] Chen Kuan-wen,Lai Chi-chuan,Hung Yi-Ping,at el.An adaptive learning method for target tracking across Multiple Cameras[J].IEEE Conference on Computer Vision and Pattern Recognition,2008,41(3):1-8.

[3] Kettnaker V,Zabih R.Bayesian multi-camera surveillance[C]//Proceedings 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.1999:253-259.

[4] Ser-Nam lim,Ahmed Elgammal,Larry S Davis.Image-based pan-tilt camera control in a multi-camera surveillance environment[J].International Conference on Multimedia and Expo,2003,1(3):1-8.

[5] Slawomir Bak,Etienne Corveem,Francois Bremond.Monique Thonnat.Person re-identification using spatial covariance regions of human body parts[J].Seventh IEEE International Conference on Advanced Video and Signal Based Surveillance,2010,2010(11):435-440.

[6] Wang X,Ma K T,Ng G,et al.Trajectory Analysis and semantic region modeling using a nonparametric bayesian model[C]//IEEE Conference on Computer Vision and Pattern Recognition,2008:1-8.

[7] Makris D,Ellis T,Black J.Bridging the gaps between cameras[J].IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2004,2(3):205-210.

[8] 翁菲,刘允才.多场景视频监控中的人物连续跟踪[J].微型电脑应用,2010,26(6):33-35. Weng Fei,Liu Yun-cai.Human tracking in multi-scene video surveillance[J].Microcomputer Applications,2010,26(6):33-35.

[9] Richard J Radke.A survey of distributed computer vision algorithms[J].Computer and Information Science,2010(9):1-21.

[10] Rublee Ethan,Rabaud Vincent,Konolige Kurt,et al.ORB-an efficient alternative to SIFT or SURF[J].International Conference on Computer Vision,2011,95(1):2564-2571.

[1] 杨欣, 夏斯军, 刘冬雪, 费树岷, 胡银记. 跟踪-学习-检测框架下改进加速梯度的目标跟踪[J]. 吉林大学学报(工学版), 2018, 48(2): 533-538.
[2] 杨欣,刘加,周鹏宇,周大可. 基于多特征融合的粒子滤波自适应目标跟踪算法[J]. 吉林大学学报(工学版), 2015, 45(2): 533-539.
[3] 梁超, 史东承. 基于运动估计的CamShift移动目标跟踪算法[J]. 吉林大学学报(工学版), 2013, 43(增刊1): 169-172.
[4] 杨小军, 宋青松, 马祥, 李东海. 基于多模型信息滤波器的故障容错目标跟踪[J]. 吉林大学学报(工学版), 2013, 43(05): 1381-1385.
[5] 李昱辰, 李战明. 噪声未知情况下的自适应无迹粒子滤波算法[J]. 吉林大学学报(工学版), 2013, 43(04): 1139-1145.
[6] 蒋蔚,伊国兴,曾庆双. 基于支持向量机粒子滤波的目标跟踪算法[J]. 吉林大学学报(工学版), 2011, 41(4): 1102-1106.
[7] 赵丁选, 崔玉鑫, 龚捷, 倪涛, 侯敬巍, 赵颖, 王超飞. 基于机器视觉的运动目标跟踪及位置检测方法[J]. 吉林大学学报(工学版), 2010, 40(增刊): 257-0261.
[8] 于哲舟, 李江春, 周栩, 杨斌, 杨礼,黄岚. 基于视频流的目标检测反馈模型[J]. 吉林大学学报(工学版), 2009, 39(增刊2): 401-0405.
[9] 李鹏,宋申民,陈兴林,段广仁. 基于迭代sigma点粒子滤波的再入目标跟踪[J]. 吉林大学学报(工学版), 2009, 39(06): 1585-1589.
[10] 陈宗海,方伟,陈会勇,王智灵 . 基于分布匹配的主动轮廓模型及其图像分割算法[J]. 吉林大学学报(工学版), 2008, 38(06): 1441-1446.
[11] 郝志成,,朱明,刘微,. 复杂背景下目标的快速提取与跟踪[J]. 吉林大学学报(工学版), 2006, 36(02): 259-0263.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!