吉林大学学报(工学版) ›› 2013, Vol. 43 ›› Issue (增刊1): 365-370.

• 论文 • 上一篇    下一篇

基于局部约束线性编码的单帧和多帧图像超分辨率重建

卜莎莎, 章毓晋   

  1. 清华大学 电子工程系,北京 100084
  • 收稿日期:2012-05-30 发布日期:2013-06-01
  • 作者简介:卜莎莎(1988-),女,硕士研究生.研究方向:图像超分辨率.E-mail:bushasha89@163.com
  • 基金资助:

    国家自然科学基金项目(61171118);高等学校博士学科点专项科研基金项目(SRFDP-20110002110057).

Single-frame and multi-frame image super-resolution based on locality-constrained linear coding

BU Sha-sha, ZHANG Yu-jin   

  1. Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
  • Received:2012-05-30 Published:2013-06-01

摘要:

基于稀疏表示的超分辨率图像重建是当前典型的算法之一,引入约束性更强的局部约束线性编码(LLC:Locality-constrained Linear Coding)对其进行了改进。首先依据一个高分辨率图像集训练出成对的高分辨率和低分辨率词典,然后根据低分辨率词典对输入的低分辨率图像用LLC方法进行编码,再依据高分辨率词典及编码系数初步重建高分辨率图像,最后添加全局约束重建高分辨率图像,并将该算法推广到多帧图像超分辨率重建层面。分析和对多幅图像的实验结果都表明,新算法相对原算法不仅提高了图像重建的质量还降低了计算复杂度,取得了满意的效果。

关键词: 超分辨率重建, 局部约束线性编码, 词典训练, 稀疏表示

Abstract:

Based on super-resolution image reconstruction algorithm of sparse representation,this paper presents an improved use of Locality-constrained Linear Coding (LLC)super-resolution reconstruction algorithm that can improve the quality of the image reconstruction while reducing the computational complexity and improving processing speed,which achieves good results.First a pair of high and low resolution Dictionary was trained in accordance with a set of high-resolution images,then LLC method was used to encode the input image with the low resolution dictionary.A high-resolution image was preliminarily reconstructed with high-resolution dictionary and coding coefficient,and finally a global constraint was added to rebuild the high-resolution image.The experimenttal results show that the new algorithm, comparing to the criginal algorithm, not only improves the quality of image reconstruction, but also reduces the computational complexity.The above improved algorithm has also been extended and applied to multi-frame image super-resolution reconstruction. Analysis and experiments show that this super-resolution reconstruction algorithm achieves some good results, it can improve the quality of the image reconstruction while reduce the computational complexity with improved processing speed.

Key words: super-resolution, LLC, dictionary training, sparse representation

中图分类号: 

  • TP391

[1] Galbraith A E,Theiler J,Thome K J,et al.Resolution enhancement of multi-look imagery for the multispectral thermal imager [J].IEEE Trans.Geoscience & Remote Sensing,2005,43(9):1964-1977.

[2] Schulz R R,Stevenson R L.A bayesian approach to image expansion for improved definition [J].IEEE Trans.Image Processing,1994,3(3):233-242.

[3] Chantas G K,Galatsanos N P,Woods N A.Super-resolution based on fast registration and maximum a posteriori reconstruction [J].IEEE Trans.Image Processing,2007,16(7):1821-1830.

[4] Ben-ezra M,Zomet A,Nayar S K.Video Super-resolution using controlled subpixel detector shifts [J].IEEE Trans.Pattern Analysis & Machine Intelligence,2005,27(6):977-987.

[5] Yang J C,Wright J,Huang T S,et al.Image super-resolution via sparse representation [J].IEEE Transactions on Image Processing,2010,9(11):2861-2873.

[6] Wang J J,Yang J C,Yu K,et al.Locality-constrained linear coding for image classification [C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR).2010:3360-3367.

[7] 孙宁宁.基于序列图像的超分辨率重建算法研究[D].郑州:河南工业大学,2010.Sun Ning-ning.Super-resolution reconstruction algorithm based on image scquence[D].Zhengzhou:Henan University of Technology,2010.

[8] Irani M,Peleg S.Motion analysis for image enhancement:resolution,occlusion and transparency [J].Journal of Visual Communication and Image Representation,1993,4(4):324-335.

[1] 尹明, 战荫伟, 裴海龙. 基于稀疏补算子学习的图像融合方法[J]. 吉林大学学报(工学版), 2016, 46(6): 2052-2058.
[2] 查长军,韦穗,杨海蓉,丁大为. 基于稀疏表示的多类融合样本中特定目标识别[J]. 吉林大学学报(工学版), 2014, 44(3): 822-827.
[3] 肖良, 戴斌, 吴涛, 方宇强. 基于字典学习与稀疏表示的非结构化道路分割方法[J]. 吉林大学学报(工学版), 2013, 43(增刊1): 384-388.
[4] 查长军, 孙南, 张成, 韦穗. 基于稀疏表示的特定目标识别[J]. 吉林大学学报(工学版), 2013, 43(01): 256-260.
[5] 翟懿奎, 甘俊英, 徐颖, 曾军英. 快速稀疏表示指背关节纹识别及其并行实现[J]. 吉林大学学报(工学版), 2012, 42(增刊1): 350-355.
[6] 周春光, 孙明芳, 王甦菁, 陈前, 刘小华, 刘昱昊. 基于稀疏张量的人脸图像特征提取[J]. , 2012, (06): 1521-1526.
Viewed
Full text
215
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 0 0 0 215

  From Others local
  Times 73 142
  Rate 34% 66%

Abstract
342
Just accepted Online first Issue
0 0 342
  From Others
  Times 342
  Rate 100%

Cited

Web of Science  Crossref   ScienceDirect  Search for Citations in Google Scholar >>
 
This page requires you have already subscribed to WoS.
  Shared   
  Discussed   
No Suggested Reading articles found!