吉林大学学报(工学版) ›› 2013, Vol. 43 ›› Issue (增刊1): 357-364.

• 论文 • 上一篇    下一篇

16阶归一化互信息和改进PSO算法的快速图像匹配

安如1, 王慧麟2, 王盈3, 陈春烨1, 张琴1, 徐晓峰1   

  1. 1. 河海大学 地球科学与工程学院,南京 210098;
    2. 南京大学 地理与海洋科学学院,南京 210093;
    3. 南京大学 建筑与城市规划学院,南京 210093
  • 收稿日期:2012-05-18 发布日期:2013-06-01
  • 作者简介:安如(1963-),女,教授.研究方向:遥感及地理信息系统理论、方法和应用.E-mail:anrunj@163.com
  • 基金资助:

    国家自然科学基金项目(41271361,40771137);"863"国家高科技研究发展计划项目 ( 2008AA12Z106).

Fast image matching by using mutual information with 16 histogram bins and improved particle swarm optimization algorithm

AN Ru1, WANG Hui-lin2, WANG Ying3, CHEN Chun-ye1, ZHANG Qin1, XU Xiao-feng1   

  1. 1. School of Earth Sciences and Engineering, Hohai University, Nanjing 210093, China;
    2. School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210093, China;
    3. School of Architecture and Urban Planning, Nanjing University, Nanjing 210093, China
  • Received:2012-05-18 Published:2013-06-01

摘要:

对不同灰度阶互信息的匹配性能进行了分析;以16阶归一化互信息为相似度评价函数,通过增大重新初始化粒子的数量和改进收敛机制,提出一种基于互信息和改进自组织分层粒子群优化算法(IHPSO)的快速图像匹配方法。以不同传感器,不同时间拍摄的同一地区遥感图像为实验数据,分别使用遍历互信息算法以及多种改进PSO算法进行实验,表明该方法有较好的匹配性能,能满足图像快速匹配的需求,如飞行制导、定位和运动追踪。

关键词: 图像匹配, 互信息, 粒子群优化, 改进自组织分层PSO, 导航定位

Abstract:

Image matching performance of normalized mutual information with different histogram bins was analyzed and discussed.Taking normalized mutual information with 16 histogram bins as similarity criteria,a fast image matching method was proposed based on an improved self-organizing hierarchical particle swarm optimizer with time-varying Acceleration Coefficients (IHPSO) through increasing the population of particles reinitialized and improving convergence criterion.Taking remotely sensed imageries captured by different sensors at different time as testing data,the algorithm with the exhaustive search method based on mutual information,Standard PSO and some improved PSO were compared.It is proved that the algorithm suggested has better matching performance and can be applied to the areas of fast image matching,e.g.aero craft navigation,positioning and movement tracking.

Key words: image matching, mutual information, particle swarm optimization, improved self-argnizing hierarchical PSO, navigation and positioning

中图分类号: 

  • TP391

[1] Zitova B,Flusser J.Image registration methods:a survey[J].Image and Vision Computing,2003,21:977-1000.

[2] 安如,王慧麟,陶晓勋,等.景象匹配相似性测度准则研究[J].河海大学学报:自然科学版,2009,37(2):147-152. An Ru,Wang Hui-lin,Tao Xiao-xun,et al.Scene matching similarty measure criteria[J].Journal of Hohai University(Natural Sciences),2009,37(2):147-152.

[3] Studholme C,Hill DLG,Hawkes D J.An overlap invariant entropy measure of 3D medical Imagealignment[J].PatternRecognition,1999,32(1),71-86.

[4] Chen H M,Varshney P K,Arora M K.Performance of mutual information similarity measure for registration of multitemporal remote sensing images[J].IEEETransactions on Geoscience and Remote Sensing,2003,41(11):2445-2454.

[5] Eberhart R C,Kennedy J.A new optimizer using particles swarm theory [C]//Proc 6th Int'l Symp on Micro Machine and Human Science.1995:39-43.

[6] Eberhart R C.Fuzzy adaptive particle swarm optimization[C]//Proceedings of the IEEE Conference on Evolutionary Computation.Seoul,Korea,2001:101-106.

[7] Carlos A Gregorio Toscano Pulido,Maximino Salazar Lechuga.Handling multiple objectives with particle swarm optimization[J].IEEE Transactions Evolutionary Computation,2004,8(3):138-142.

[8] Chunming Yang,Dan Simon.A new particle swarm optimization technique[C]//Proceedings of the 18th International Conference on Systems Engineering,IEEE.2005.

[9] 张见威,韩国强.基于互信息的医学图像配准中的互信息的计算[J].生物医学工程学杂志,2008,25(1):12-17.Zhang Jian-wei,Han Guo-qiang.Calculation of mutual information based on mutual information image regislration[J].Journal of Biomedical Engineering,2008,25(1):12-17.

[10] Van Den Bergh F,Engelbrecht A P.A Cooperative approach to particle swarm optimization[J].IEEE Transactions on Evolutionary Computation,2004,8(3):225-239.

[11] Cover T M,Thomas J A.Elements of information theory[C]//Proceedings of the 18th International Conference on Systems Engineering IEEE.New York:John Wiley & Sons,2009.

[12] Studholme C,Hill d L G,Hawkes D J.An overlap invariant entropy measure of 3D medical image alignment[J].Pattern Recognition,1999,32(1):71-86.

[13] An Ru,Gong Peng,Wang Hui-lin,et al.A modified PSO algorithm for remote sensing image template matching[J].Photogrammetric Engineering & Remote Sensing,2010,76(4):379-389.

[14] Hu Xiao-hui,Shi Yu-hui,Russ Eberhart.Recent advances in particle swarm[C]//Proceedings of the 2004 Congress on Evolutionary Computation,2011:90-97.

[15] Mendes R,Kennedy J,Neves J.The fully informed particle swarm:simpler,maybe better[J].IEEE Transactions on Evolutionary Computation,2004,8(3):204-210.

[16] Ratnaweera A,Halgamure S K,Watson H C.Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients[J].Evolutionary Computation,IEEE Transactions,2004,(8):240-255.

[17] Liu Yu,Qin Zheng,Shi Zhe-wen,et al.Center particle swarm optimization[C]//Preprint submitted to Elsevier Science,2006:12-19.

[18] Jin Jing,Wang Qiang,Shen Yi.High-performance medical image registration using improving particle swarm optimization[C]//IEEE International Instrumentation and Measurement Techonlogy Conference,2008:12-15.

[1] 赵东,孙明玉,朱金龙,于繁华,刘光洁,陈慧灵. 结合粒子群和单纯形的改进飞蛾优化算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1867-1872.
[2] 刘元宁, 刘帅, 朱晓冬, 陈一浩, 郑少阁, 沈椿壮. 基于高斯拉普拉斯算子与自适应优化伽柏滤波的虹膜识别[J]. 吉林大学学报(工学版), 2018, 48(5): 1606-1613.
[3] 黄辉, 冯西安, 魏燕, 许驰, 陈慧灵. 基于增强核极限学习机的专业选择智能系统[J]. 吉林大学学报(工学版), 2018, 48(4): 1224-1230.
[4] 杨东升, 张展, 廉梦佳, 王丽娜. 位图局部敏感哈希的匹配二进制特征搜索算法[J]. 吉林大学学报(工学版), 2018, 48(3): 893-902.
[5] 谭泗桥, 张席, 李钎, 艾陈. 基于最大互信息系数的信息推送模型构建[J]. 吉林大学学报(工学版), 2018, 48(2): 558-563.
[6] 刘颖, 张凯, 于向军. 基于代理模型的中空轴式大型静压轴承多目标优化[J]. 吉林大学学报(工学版), 2017, 47(4): 1130-1137.
[7] 黄璇, 郭立红, 李姜, 于洋. 改进粒子群优化BP神经网络的目标威胁估计[J]. 吉林大学学报(工学版), 2017, 47(3): 996-1002.
[8] 张家旭, 李静. 基于混合优化方法的UniTire轮胎模型参数辨识[J]. 吉林大学学报(工学版), 2017, 47(1): 15-20.
[9] 卢英, 王慧琴, 秦立科. 高大空间建筑火灾精确定位方法[J]. 吉林大学学报(工学版), 2016, 46(6): 2067-2073.
[10] 蒋荣超, 王登峰, 秦民, 蒋永峰. 基于疲劳寿命的轿车后悬架扭转梁轻量化设计[J]. 吉林大学学报(工学版), 2016, 46(1): 35-42.
[11] 杨兆军, 杨川贵, 陈菲, 郝庆波, 郑志同, 王松. 基于PSO算法和SVR模型的加工中心可靠性模型参数估计[J]. 吉林大学学报(工学版), 2015, 45(3): 829-836.
[12] 邵鹏, 吴志健, 周炫余. 基于反向学习的粒子群算法对线性相位低通FIR滤波器的优化[J]. 吉林大学学报(工学版), 2015, 45(3): 907-912.
[13] 吴一全, 吴诗婳, 张宇飞. 基于混沌粒子群优化的Contourlet域红外图像自适应增强[J]. 吉林大学学报(工学版), 2014, 44(5): 1466-1473.
[14] 许芳1, 2, 靳伟伟2, 陈虹1, 2, 张振威2. 一种模型预测控制器的FPGA硬件实现[J]. 吉林大学学报(工学版), 2014, 44(4): 1042-1050.
[15] 王金芳, 虢明, 聂新礼. 帧间差分相位谱帧长和帧移的最优设置方法[J]. 吉林大学学报(工学版), 2013, 43(增刊1): 6-10.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!