吉林大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (2): 600-605.doi: 10.13229/j.cnki.jdxbgxb201502039

• 论文 • 上一篇    下一篇

基于无线传感器网络的角色成员关系剩余能量新算法

匡哲君1,师唯佳2,胡亮1   

  1. 1.吉林大学 计算机科学与技术学院,长春 130012;
    2.罗格斯新泽西州立大学 教育研究与学术规划处, 新布伦斯威克 新泽西州 美国 08901
  • 收稿日期:2013-12-19 出版日期:2015-04-01 发布日期:2015-04-01
  • 通讯作者: 胡亮(1968),男,教授,博士生导师.研究方向:分布式计算,网络与信息安全.E-mail:hul@jlu.edu.cn
  • 作者简介:匡哲君(1984),男,博士研究生.研究方向:物联网与传感器网络.E-mail:kuangzhejun@163.com
  • 基金资助:
    “863”国家高技术研究发展计划项目(2011AA010101);吉林省重大科技攻关项目(2011ZDGG007);国家自然科学基金面上项目(61073009,60873235);“973”国家重点基础研究发展计划项目(2009CB320706).

Residual energy algorithm of role-relationship and member-relationship based on wireless sensor network

KUANG Zhe-jun1,SHI Wei-jia2,HU Liang1   

  1. 1.College of Computer Science and Technology, Jilin University, Changchun 130022,China;
    2.Office of Institutional Research and Academic Planning, Rutgers, The State University of New Jersey, New Brunswick 08901, USA
  • Received:2013-12-19 Online:2015-04-01 Published:2015-04-01

摘要: 将传感器节点的剩余能量和通信代价这两个参数作为参考依据,提出了角色成员关系能量算法(Role energy-efficient membership,REEM)。该算法构建了节点之间的角色关系和成员关系,并且通过这两层关系进行信息的传输。节点的剩余能量和汇聚节点的通信代价是角色和成员关系的主要依据。通过传感器节点的角色和成员关系的互相转换,使得整个网络能耗均衡。尽可能地利用节点的剩余能量,延长网络运行的生命周期,最大程度地进行信息搜集。

关键词: 计算机系统结构, 无线传感器网络, 剩余能量, 角色成员关系, 汇聚节点, REEM算法

Abstract: A REEM algorithm is proposed, which takes the residual energy and communication cost of sensor nodes as two parameters. The role-relationship and member-relationship between nodes are constructed in the algorithm, and information transformation is conducted through these two relationships. The role-relationship and member-relationship are dependent on the residual energy and communication cost of the nodes. The energy-balance of the wireless sensor network is obtained by the conversion of the role-relationship and member-relationship. The algorithm can make use of the node residual energy as much as possible, extend the life cycle of the network, and realize maximum information collection.

Key words: computer system structure, wireless sensor networks, residual energy, role-membership, sink nodes, REEM algorithm

中图分类号: 

  • TP393
[1] Potdar V, Sharif A, Chang E. Wireless sensor networks: A survey[C]∥Proceedings of the Advanced Information Networking and Applications Workshops, IEEE, 2009: 636-641.
[2] El-Hoiydi A, Decotignie J D. WiseMAC: an ultra low power MAC protocol for the downlink of infrastructure wireless sensor networks[C]∥Proceedings of the Computers and Communications, IEEE, 2004: 244-251.
[3] 王毅, 张德运, 马新新. 无线传感器网络传感器节点动态功耗管理方法[J]. 吉林大学学报:工学版, 2008,38(4): 880-885.
Wang Yi,Zhang De-yun,MA Xin-xin. Novel dynamic power management of sensor node in wireless sensor networks[J]. Journal of Jilin University(Engineering and Technology Edition), 2008,38(4): 880-885.
[4] Zheng T, Radhakrishnan S, Sarangan V. PMAC: an adaptive energy-efficient MAC protocol for wireless sensor networks[C]∥Proceedings of the Parallel and Distributed Processing Symposium, IEEE, 2005:65-72.
[5] Keller M, Beutel J, Thiele L. How was your journey?Uncovering routing dynamics in deployed sensor networks with multi-hop network tomography[C]∥Proceedings of the 10th ACM Conference on Embedded Network Sensor Systems, ACM, 2012: 15-28.
[6] Wu X, Chen G, Das S K. On the energy hole problem of nonuniform node distribution in wireless sensor networks[C]∥Proceedings of the Mobile Adhoc and Sensor Systems (MASS), IEEE, 2006: 180-187.
[7] Wu X, Chen G, Das S K. Avoiding energy holes in wireless sensor networks with nonuniform node distribution[J]. IEEE Transactions on Parallel and Distributed Systems, 2008, 19(5): 710-720.
[8] Wang C, Jiang C, Liu Y, et al. Aggregation capacity of wireless sensor networks: Extended network case[C]∥Proceedings of the INFOCOM, IEEE, 2014,63(6):1351-1364.
[9] Jindal A, Psounis K. A clustering method that uses lossy aggregation of data[C]∥Proceedings of the 2nd International Conference on Embedded Networked Sensor Systems, ACM, 2004: 269-270.
[10] Wang P, Dai R, Akyildiz I F. Collaborative data compression using clustered source coding for wireless multimedia sensor networks[C]∥Proceedings of the INFOCOM, 2010: 1-9.
[11] Wang J, Tang S, Yin B, et al. Data gathering in wireless sensor networks through intelligent compressive sensing[C]∥Proceedings of the INFOCOM, IEEE, 2012: 603-611.
[12] Su L, Gao J, Yang Y, et al. Hierarchical aggregate classification with limited supervision for data reduction in wireless sensor networks[C]∥Proceedings of the Proceedings of the 9th ACM Conference on Embedded Networked Sensor Systems, ACM, 2011: 40-53.
[13] Kuo T W, Tsai M J. On the construction of data aggregation tree with minimum energy cost in wireless sensor networks: NP-completeness and approximation algorithms[C]∥Proceedings of the INFOCOM, IEEE, 2012: 2591-2595.
[14] Wang C, Jiang C, Tang S, et al. Select Cast: scalable data aggregation scheme in wireless sensor networks[J]. IEEE Transactions on Parallel and Distributed Systems, 2012, 23(10): 1958-1969.
[15] Guo L, Beyah R, Li Y. SMITE: A stochastic compressive data collection protocol for mobile wireless sensor networks[C]∥Proceedings of the INFOCOM, IEEE, 2011: 1611-1619.
[16] 梁银. 传感器节点的节能策略研究[J]. 现代计算机, 2007, (2): 9-10,20.
Liang Yin. Research on energy- conserving strategy for sensor node[J]. Modern Computer,2007, (2): 9-10,20.
[17] Xiong S, Yu L, Shen H, et al. Efficient algorithms for sensor deployment and routing in sensor networks for network-structured environment monitoring[C]∥Proceedings of the INFOCOM, IEEE, 2012: 1008-1016.
[18] Luo D, Zhu X, Wu X, et al. Maximizing lifetime for the shortest path aggregation tree in wireless sensor networks[C]∥Proceedings of the INFOCOM, IEEE, 2011: 1566-1574.
[19] 张瑞华, 程合友, 贾智平. 基于能量效率的无线传感器网络分簇算法[J]. 吉林大学学报: 工学版, 2010, 40(6): 1663-1667.
Zhang Rui-hua ,Cheng He-you,Jia Zhi-ping.Energy-efficient clustering algorithm for wireless sensor networks[J].Journal of Jilin University(Engineering and Technology Edition),2010,40(6):1663-1667.
[20] Younis O, Fahmy S. HEED: a hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks[J]. IEEE Transactions on Mobile Computing, 2004, 3(4): 366-379.
[21] 张瑞华, 贾智平, 袁东风. 异构型无线传感器网络的生命周期[J]. 吉林大学学报: 工学版, 2008, 38(5): 1136-1140.
Zhang Rui-hua,Jia Zhi-ping,Yuan Dong-feng. Lifetim analysis in heterogeneous wireless sensor networks[J]. Journal of Jilin University(Engineering and Technology Edition), 2008, 38(5): 1136-1140.
[22] Gupta G, Misra M, Garg K. An energy balanced mobile agents based data dissemination protocol for wireless sensor networks[C]∥Proceedings of the 1st International Conference on Wireless Technologies for Humanitarian Relief, ACM, 2011: 89-95.
[23] Ferrari F, Zimmerling M, Mottola L, et al. Low-power wireless bus[C]∥Proceedings of the 10th ACM Conference on Embedded Network Sensor Systems, ACM, 2012: 1-14.
[24] 邱杰凡, 李栋, 石海龙. EasiCache: 一种基于缓存机制的低开销传感器网络代码更新方法[J]. 计算机学报, 2012, 35(3): 555-567.
Qiu Jie-fan, Li Dong, Shi Hai-long. EasiCache: A Low-Overhead Sensor Network Reprogramming Approach Based on Cache Mechanism[J]. Chinese Journal of Computers, 2012, 35(3): 555-567.
[25] 刘学军, 陆海明, 周水庚. 基于小世界的传感器网络查询能量空洞问题[J]. 计算机学报, 2012, 35(12):2676-2684.
Liu Xue-jun, Lu Hai-ming, Zhou Shui-geng. The energy hole problem based on small world in wireless sensor networks[J]. Chinese Journal of Computers, 2012, 35(12): 2676-2684.
[26] 杨翰超. 无线传感器网络关键节能技术及节能策略研究[J]. 中国新通信, 2010(5):33-35.
Yang Han-chao. Research of key energy saving and energy policy on wireless sensor network[J]. China New Telecommunications, 2010(5):33-35.
[27] Flathagen J, Kure , Engelstad P E. Constrained-based multiple sink placement for wireless sensor networks[C]∥Proceedings of the Mobile Adhoc and Sensor Systems (MASS), IEEE, 2011: 783-788.
[28] Zhang X. Data Collection in Wireless Sensor Networks[M]. Chicago: University of Illinois, 2009.
[29] Yu B, Li J. Minimum-time aggregation scheduling in multi-sink sensor networks[C]∥Proceedings of the Sensor, Mesh and Ad Hoc Communications and Networks (SECON), IEEE, 2011: 422-430.
[1] 余宜诚, 胡亮, 迟令, 初剑峰. 一种改进的适用于多服务器架构的匿名认证协议[J]. 吉林大学学报(工学版), 2018, 48(5): 1586-1592.
[2] 董颖, 崔梦瑶, 吴昊, 王雨后. 基于能量预测的分簇可充电无线传感器网络充电调度[J]. 吉林大学学报(工学版), 2018, 48(4): 1265-1273.
[3] 刘洲洲, 彭寒. 基于节点可靠度的无线传感器网络拓扑控制算法[J]. 吉林大学学报(工学版), 2018, 48(2): 571-577.
[4] 董坚峰, 张玉峰, 戴志强. 改进的基于狄利克雷混合模型的推荐算法[J]. 吉林大学学报(工学版), 2018, 48(2): 596-604.
[5] 赵博, 秦贵和, 赵永哲, 杨文迪. 基于半陷门单向函数的公钥密码[J]. 吉林大学学报(工学版), 2018, 48(1): 259-267.
[6] 刘磊, 刘利娟, 吴新维, 张鹏. 基于ECPMR的编译器测试方法[J]. 吉林大学学报(工学版), 2017, 47(4): 1262-1267.
[7] 董立岩, 王越群, 贺嘉楠, 孙铭会, 李永丽. 基于时间衰减的协同过滤推荐算法[J]. 吉林大学学报(工学版), 2017, 47(4): 1268-1272.
[8] 于斌斌, 武欣雨, 初剑峰, 胡亮. 基于群密钥协商的无线传感器网络签名协议[J]. 吉林大学学报(工学版), 2017, 47(3): 924-929.
[9] 邓昌义, 郭锐锋, 张忆文, 王鸿亮. 基于平衡因子的动态偶发任务低功耗调度算法[J]. 吉林大学学报(工学版), 2017, 47(2): 591-600.
[10] 董颖, 周占颖, 苏真真, 徐洋, 钱志鸿. 基于路由信息的无线传感器网络跨层MAC协议[J]. 吉林大学学报(工学版), 2017, 47(2): 647-654.
[11] 魏晓辉, 刘智亮, 庄园, 李洪亮, 李翔. 支持大规模流数据在线处理的自适应检查点机制[J]. 吉林大学学报(工学版), 2017, 47(1): 199-207.
[12] 郝娉婷, 胡亮, 姜婧妍, 车喜龙. 基于多管理节点的乐观锁协议[J]. 吉林大学学报(工学版), 2017, 47(1): 227-234.
[13] 朱海洋, 张合, 马少杰. 增强型超声波周向旋转扫描节点参数优化[J]. 吉林大学学报(工学版), 2017, 47(1): 262-267.
[14] 魏晓辉, 李翔, 李洪亮, 李聪, 庄园, 于洪梅. 支持大规模流数据处理的弹性在线MapReduce模型及拓扑协议[J]. 吉林大学学报(工学版), 2016, 46(4): 1222-1231.
[15] 刘洲洲, 王福豹. 改进的离散混合蛙跳算法压缩感知信号重构及应用[J]. 吉林大学学报(工学版), 2016, 46(4): 1261-1268.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!