吉林大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (2): 568-577.doi: 10.13229/j.cnki.jdxbgxb201602035

• 论文 • 上一篇    下一篇

基于云群的高维差分进化算法及其在网络安全态势预测上的应用

胡冠宇, 乔佩利   

  1. 哈尔滨理工大学 计算机科学与技术学院,哈尔滨 150080
  • 收稿日期:2014-04-15 出版日期:2016-02-20 发布日期:2016-02-20
  • 通讯作者: 乔佩利(1951-),男,教授,博士生导师.研究方向:智能计算,网络安全.E-mail:qiaopeili2014@163.com E-mail:huguanyu0708@163.com
  • 作者简介:胡冠宇(1982-),男,博士研究生,讲师.研究方向:智能计算,网络安全.E-mail:huguanyu0708@163.com
  • 基金资助:
    国家自然科学基金项目(61103149); 黑龙江省自然科学基金项目(QC2013C060)

High dimensional differential evolutionary algorithm based on cloud population for network security prediction

HU Guan-yu, QIAO Pei-li   

  1. School of Computer Science and Technology, Harbin University of Science and Technology, Harbin 150080, China
  • Received:2014-04-15 Online:2016-02-20 Published:2016-02-20

摘要: 提出了一种基于云群的高维差分进化算法(CPDE),并将其应用在网络安全态势预测领域.该算法所提出的云群和分布链概念增加了种群的多样性.算法中的入侵算子将获胜个体的分布植入给其他个体,使得在进化的过程中,个体的形态呈现多样性.协作算子在个体之间引入了合作机制并执行差分操作.局部搜索算子增加了算法的搜索精度.实验结果显示CPDE是一个有效的高维进化算法,它在优化网络安全态势预测模型中具有一定的优势.

关键词: 计算机应用技术, 差分进化算法, 云模型, 云群, 分布链, 网络安全态势预测

Abstract: A novel differential evolutionary algorithm based on could population (CPDE) is proposed to solve the network security situation prediction. The proposed concepts of cloud population and the distribution chain promote the diversity of the population. In this algorithm, first, the intrusion operator is employed to introduce the competition among the cloud populations, where the winners will implant their distribution into other cloud individuals. Then, cooperative operator is used to introduce the collaboration among the cloud individuals and perform the differential operation. Finally, the accuracy of the algorithm is improved using the local search operator. Experiment results show that the proposed CPDE is an efficient high-dimensional evolutionary algorithm and possesses certain advantages in optimizing the prediction model of the network security.

Key words: computer application technology, differential evolutionary algorithm, cloud model, cloud population, distribution chain, network security situation prediction

中图分类号: 

  • TP18
[1] 张晓伟, 刘三阳, 迟晓妮. 高效求解多峰值全局优化的区间-遗传算法[J]. 吉林大学学报:工学版,2008, 38(4): 876-879.
Zhang Xiao-wei, Liu San-yang, Chi Xiao-ni. Efficient interval-genetic algorithm for multi-peak global optimization[J]. Journal of Jilin University (Engineering and Technology Edition),2008, 38(4): 876-879.
[2] 朝勇, 郑建国. 用于高维函数优化的多智能体量子进化算法[J]. 自然科学进展,2007, 18(2): 197-205.
Chao Yong, Zheng Jian-guo. A multi-agent quantum evolutionary algorithm for the high dimensional function optimization[J]. Progress in Natural Science,2007, 18(2): 197-205.
[3] Noman N, Iba H. Enhancing differential evolution performance with local search for high dimensional function optimization[C]//Genetic and Evolutionary Computation Conference (GECCO),2005: 967-974.
[4] Zhang Wei-guang, He Rui, Liu Yu, , et al. An evolutionary algorithm based on cloud model[J]. Chinese Journal of Computers,2008, 31(7): 1082-1091.
[5] Dai Chao-hua, Zhu Yun-fang, Chen Wei-rong, et al. Cloud model based genetic algorithm and it's applications[J]. Acta Electronica Sinica,2007, 35(7): 1419-1424.
[6] Dai Chao-hua, Zhu Yun-fang, Chen Wei-rong. Adaptive genetic algorithm based on cloud theory[J]. Control Theory and Applications,2007, 24(4): 646-650.
[7] Li De-yi, Meng Hai-jun, Shi Xue-mei. Membership clouds and membership cloud generators[J]. Journal of Computer Research Development, 1995, 32(6): 15-20.
[8] Storn R , Price K. Differential evolution-A simple and efficient adaptive scheme for global optimization over continuous spaces[R]. Berkeley: University of California , 2006.
[9] Lampinen J. A bibliography of differential evolution algorithm[EB/OL]. http://www. lut .fi/~jlampine/ debiblio. Htm,2002-10-14.
[10] 李德毅, 杜鹢. 不确定性人工智能[M]. 北京:国防工业出版社,2005.
[11] Andries P Engelbrecht. Computational Intelligence: An Introduction[M].2nd Edition. Beijing:Tsinghua University Press, 2010.
[12] Yao X, Lin G, Liu Y. An analysis of evolutionary algorithms based on neighbourhood and step size[C]//Proceedings of the Sixth Annual Conference on Evolutionary Programming, 1997:297-307.
[13] Yao X, Liu Y, Lin G. Evolutionary programming made faster[J]. IEEE Transactions on Evolutionary Computation, 1999, 3(2):82-102.
[14] Nikolaus H. The CMA Evolution Strategy: A Comparing Review Towards a New Evolutionary Computation[M]. Berlin: Springer, 2006:75-102.
[15] Storn R, Price K. Differential evolution-a simple and efficient adaptive scheme for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997, 11(4):341-359.
[16] Kennedy J, Eberhart R C. Particle swarm optimization[C]//Proceedings of the 1995 IEEE International Conference on Neural Networks, Piscataway, NJ: IEEE Service Center, 1995:1942-1948.
[17] BASS T. Intrusion detection system and multi-sensor data fusion: creating cyberspace situation awareness[J]. Communications of The ACM, 2000, 43(4): 99-105.
[18] 王慧强, 赖积保, 胡明明, 等. 网络安全态势感知关键技术研究[J]. 武汉大学学报:信息科学版, 2008, 33(10): 995-998.
Wang Hui-qiang, Lai Ji-bao, Hu Ming-ming, et al. Research on key technologies for implementing network security situation awareness[J]. Geomatics and Information Science of Wuhan University, 2008, 33(10): 995-998.
[19] 任伟,蒋兴浩,孙锬锋. 基于RBF神经网络的网络安全态势预测方法[J]. 计算机工程与应用, 2006, 31: 136-139.
Ren Wei, Jiang Xing-hao, Sun Tan-feng. RBFNN-based prediction of network security situation[J].Computer Engineering and Application,2006, 31: 136-139.
[20] 陈秀真, 郑庆华, 管晓宏, 等. 层次化网络安全威胁态势量化评估方法[J]. 软件学报, 2006, 17(4): 885-897.
Chen Xiu-zhen, Zheng Qing-hua, Guan Xiao-hong, et al. Quantitative hierarchical threat evaluation model for network security[J]. Journal of Software, 2006, 17(4): 885-897.
[1] 胡冠宇, 乔佩利. 混沌协方差矩阵自适应进化策略优化算法[J]. 吉林大学学报(工学版), 2017, 47(3): 937-943.
[2] 刘星材, 何世伟, 孙杨, 黎浩东, 景云. 基于云和声搜索的综合运输网络设计和货流分配优化[J]. 吉林大学学报(工学版), 2016, 46(1): 108-113.
[3] 周继彪, 陈红, 闫彬, 张文, 冯微. 基于云模型的地铁换乘枢纽拥挤度辨识方法[J]. 吉林大学学报(工学版), 2016, 46(1): 100-107.
[4] 佟金, 王亚辉, 樊雪梅, 张书军, 陈东辉. 生鲜农产品冷链物流状态监控信息系统[J]. 吉林大学学报(工学版), 2013, 43(06): 1707-1711.
[5] 孔英秀, 赵丁选, 杨彬, 李天宇, 韩京元. 基于PSO-DE和LMI的鲁棒静态输出反馈控制[J]. 吉林大学学报(工学版), 2013, 43(05): 1375-1380.
[6] 景云, 何世伟, 宋瑞, 黎浩东. 基于云免疫克隆算法的空车动态优化问题[J]. 吉林大学学报(工学版), 2012, 42(增刊1): 261-265.
[7] 杨志晓, 范艳峰, 孙福艳. 基于正态云模型的虚拟人点头动作不确定性控制[J]. 吉林大学学报(工学版), 2012, 42(02): 476-482.
[8] 张君;张国英;刘玉树. 基于属性相似度云模型的网络异常检测[J]. 吉林大学学报(工学版), 2006, 36(06): 954-0957.
[9] 段海滨, 王道波, 于秀芬 . 基于云模型的小生境MAX-MIN相遇蚁群算法[J]. 吉林大学学报(工学版), 2006, 36(05): 803-0808.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!