吉林大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (2): 583-590.doi: 10.13229/j.cnki.jdxbgxb201702033

• • 上一篇    下一篇

基于尿素选择催化还原系统的氨覆盖率非线性降维观测器设计

赵靖华1, 2, 3, 胡云峰1, 3, 高炳钊1, 陈虹1, 3   

  1. 1.吉林大学 汽车仿真与控制国家重点实验室,长春 130022;
    2.吉林师范大学 计算机学院,吉林 四平 136002;
    3.吉林大学 通信工程学院, 长春 130022
  • 收稿日期:2016-01-04 出版日期:2017-03-20 发布日期:2017-03-20
  • 通讯作者: 胡云峰(1983-),男,讲师.研究方向:汽车发动机控制.E-mail:huyf@jlu.edu.cn
  • 作者简介:赵靖华(1980-),男,在站博士后,副教授.研究方向:发动机尾气排放控制.E-mail:zhaojh08@mails.jlu.edu.cn
  • 基金资助:
    国家自然科学基金项目(61374046,61520106008); 吉林省教育厅“十三五”科学研究项目(吉教科合字[2016]第223号).

Design of nonlinear reduced-order observer for ammonia coverage based on urea-SCR systems

ZHAO Jing-hua1, 2, 3, HU Yun-feng1, 3, GAO Bing-zhao1, CHEN Hong1, 3   

  1. 1.State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, China;
    2.College of Computer, Jilin Normal University, Siping 136002, China;
    3.College of Communication Engineering, Jilin University, Changchun 130022, China
  • Received:2016-01-04 Online:2017-03-20 Published:2017-03-20

摘要: 针对尿素选择性催化还原(urea-SCR)系统氨覆盖率状态变量不可测量问题,在输入-状态稳定性理论(ISS)框架下设计了一款降维观测器。为保证观测器误差动态的鲁棒性,将温度、废气流量传感器测量等模型误差看作外部扰动,在ISS理论框架下进行了分析。为了提高观测器对噪声的鲁棒性并减少估计的静态误差,本文通过线性矩阵不等式(LMI) 和凸优化得到了尽可能小的观测器增益。在enDYNA精确发动机模型的FTP75测试循环下进行了瞬态仿真,与普通的机理观测器对比表明,本文提出的降维观测器对外界干扰和参数不确定性具有更强的鲁棒性。

关键词: 人工智能, 降维观测器, 非线性, 输入-状态稳定性, 氨覆盖率估计

Abstract: For ammonia coverage of urea-SCR systems, whose state is not measurable, a reduced-order observer method based on Input-to-state Stability (ISS) is proposed. The errors of sensor measurement including temperature, exhaust gas flow rate are considered as additional disturbance inputs. The observer is designed in order that the error dynamics is input-to-state stable, and the guideline for selecting the controller parameters is given. The transient performance of the proposed observer is tested on an validated enDYNA diesel model with urea-SCR aftertreatment systems. Comparing with common mechanism observer, the proposed observer has better performance.

Key words: artificial intelligence, reduced-order observer, nonlinear, input-to-state stability(ISS), ammonia coverage estimator

中图分类号: 

  • TP273
[1] 赵靖华,胡云峰,陈虹,等. 基于“三步法”的柴油机urea-SCR 系统控制设计[J]. 吉林大学学报:工学版,2015,45(6): 1913-1923.
Zhao Jing-hua, Hu Yun-feng, Chen Hong, et al. Design of diesel engine's urea-SCR system controller using triple-step method[J]. Journal of Jilin University(Engineering and Technology Edition), 2015,45(6): 1913-1923.
[2] Guzzella L, Onder C H. Introduction to Modeling and Control of Internal Combustion Engine Systems[M].Switzerland: Springer, 2010.
[3] Johnson T V. Diesel emission control in review[J]. SAE Int J Fuels Lubr, 2009, 2(1): 1-12.
[4] Hsieh M F, Wang J, Canova M. Two-level nonlinear model predictive control for lean NO x trap regenerations[J]. Journal of Dynamic Systems, Measurement, and Control,2010, 132(4): 041001.
[5] Wu H, Mizukami K. Exponential stability of a class of nonlinear dynamical systems with uncertainties[J]. Systems & Control Letters, 1993, 21(4): 307-313.
[6] 王谦,张铎,王静,等. 车用柴油机 Urea-SCR 系统数值分析与参数优化[J].内燃机学报, 2013, 31(4):343-348.
Wang Qian, Zhang Duo, Wang Jing, et al. Numerical analysis and parametric optimization on urea-SCR system of vehicle diesel[J]. Transactions of CSICE, 2013, 31(4):343-348.
[7] Chiang C J, Kuo C L, Huang C C, et al. Model predictive control of SCR aftertreatment system[C]∥IEEE Conference on Industrial Electronics and Applications, Taichung,2010: 2058-2063.
[8] Zhao J, Yang T L, Lu G Y. Enhancement of NO 2 gas sensing response based on ordered mesoporous fe-doped In 2 O 3 [J]. Sensors and Actuators B, 2014, 191: 806-812.
[9] Devarakonda M, Parker G, Johnson J H, et al. Model-based estimation and control system development in a urea-SCR aftertreatment system[J]. SAE International Journal of Fuels and Lubricants, 2008, 1(1): 646-661.
[10] 侯洁,颜伏伍,胡杰,等. Urea-SCR系统NO x 传感器的NH 3 交叉感应研究[J]. 内燃机学报,2014,32(3): 249-253.
Hou Jie, Yan Fu-wu, Hu Jie, et al. Ammonia cross-sensitivity of NO x sensor for urea-SCR system[J]. Transactions of CSICE, 2014,32(3): 249-253.
[11] Devarkonda M, Parker G, Johnson J H. Model-based control system design in a urea-SCR aftertreatment system based on NH 3 sensor feedback[J]. International Journal of Automotive Technology, 2009, 10(6): 653-662.
[12] Hsieh M, Wang J. Diesel engine selective catalytic reduction ammonia surface coverage control using a computationally-efficient model predictive control assisted method[C]∥Proceedings of the ASME Dynamic Systems and Control Conference, 2009: 865-872.
[13] Hsieh M F, Wang J. Backstepping based nonlinear ammonia surface coverage ratio control for diesel engine selective catalytic reduction systems[C]∥ASME 2009 Dynamic Systems and Control Conference,Hollywood,CA,2009: 889-896.
[14] Hsieh M, Wang J. A two-cell backstepping-based control strategy for diesel engine selective catalytic reduction systems[J]. IEEE Transactions on Control Systems Technology, 2011, 19(6): 1504-1515.
[15] Zhang H, Wang J, Wang Y Y. Robust filtering for ammonia coverage estimation in diesel engine selective catalytic reduction systems[J]. Journal of Dynamic Systems, Measurement, and Control, 2013, 135(6): 1504-1515.
[16] Bonfils A, Creff Y, Lepreux O, et al. Closed-loop control of a SCR system using a NO x sensor cross-sensitive to NH 3 [J]. Journal of Process Control, 2014, 24:368-378.
[17] Gao B, Chen H, Zhao H, et al. A reduced-order nonlinear clutch pressure observer for automatic transmission[J]. IEEE Transactions on Control Systems Technology, 2010,18(2): 446-453.
[18] Guo H, Chen H, Cao D, et al. Design of a reduced-order non-linear observer for vehicle velocities estimation[J]. IET Control Theory & Applications, 2013, 7(17): 2056-2068.
[19] Willi R. Low-temperature selective catalytic reduction of NO x -catalytic behavior and kinetic modeling[D]. ETH Zurich, Switzerland,1996.
[20] Sch`ar C M, Onder C H, Geering H P. Control of an SCR catalytic converter system for a mobile heavy-duty application[J]. IEEE Transactions on Control Systems Technology, 2006, 14(4): 641-653.
[21] Heiredal M L, Jensen A D, Thogersen J R, et al. Pilot-scale investigation and cfd modeling of particle deposition in low-dust monolithic SCR deNO x catalysts[J]. AIChE Journal, 2013, 59(6): 1919-1933.
[22] Kota A S, Luss D, Balakotaiah V. Modeling studies of low-temperature aerobic NO x reduction by a sequence of LNT-SCR catalysts[J]. AIChE Journal, 2013, 59(9): 3421-3431.
[23] Krstic M, Kokotovic P V, Kanellakopoulos I. Nonlinear and Adaptive Control Design[M]. New York:John Wiley & Sons, Inc., 1995.
[24] Philipp O, Huber M. Development and test of ECU functions for OBD with enDYNA[C]∥Proc JSAE Annual Congress,Wiesbaden,Germany,2004:1-4.
[1] 刘兆惠, 王超, 吕文红, 管欣. 基于非线性动力学分析的车辆运行状态参数数据特征辨识[J]. 吉林大学学报(工学版), 2018, 48(5): 1405-1410.
[2] 董飒, 刘大有, 欧阳若川, 朱允刚, 李丽娜. 引入二阶马尔可夫假设的逻辑回归异质性网络分类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1571-1577.
[3] 顾海军, 田雅倩, 崔莹. 基于行为语言的智能交互代理[J]. 吉林大学学报(工学版), 2018, 48(5): 1578-1585.
[4] 宫洵, 蒋冰晶, 胡云峰, 曲婷, 陈虹. 柴油机主-从双微元Urea-SCR系统非线性状态观测器设计与分析[J]. 吉林大学学报(工学版), 2018, 48(4): 1055-1062.
[5] 王旭, 欧阳继红, 陈桂芬. 基于垂直维序列动态时间规整方法的图相似度度量[J]. 吉林大学学报(工学版), 2018, 48(4): 1199-1205.
[6] 张浩, 占萌苹, 郭刘香, 李誌, 刘元宁, 张春鹤, 常浩武, 王志强. 基于高通量数据的人体外源性植物miRNA跨界调控建模[J]. 吉林大学学报(工学版), 2018, 48(4): 1206-1213.
[7] 李静, 韩佐悦, 杨威, 邢国成, 周瑜. 基于非线性模型的磁流变半主动悬架驱动系统[J]. 吉林大学学报(工学版), 2018, 48(3): 645-651.
[8] 曹婧华, 孔繁森, 冉彦中, 宋蕊辰. 基于模糊自适应PID控制的空压机背压控制器设计[J]. 吉林大学学报(工学版), 2018, 48(3): 781-786.
[9] 黄岚, 纪林影, 姚刚, 翟睿峰, 白天. 面向误诊提示的疾病-症状语义网构建[J]. 吉林大学学报(工学版), 2018, 48(3): 859-865.
[10] 李雄飞, 冯婷婷, 骆实, 张小利. 基于递归神经网络的自动作曲算法[J]. 吉林大学学报(工学版), 2018, 48(3): 866-873.
[11] 刘杰, 张平, 高万夫. 基于条件相关的特征选择方法[J]. 吉林大学学报(工学版), 2018, 48(3): 874-881.
[12] 何祥坤, 季学武, 杨恺明, 武健, 刘亚辉. 基于集成式线控液压制动系统的轮胎滑移率控制[J]. 吉林大学学报(工学版), 2018, 48(2): 364-372.
[13] 王旭, 欧阳继红, 陈桂芬. 基于多重序列所有公共子序列的启发式算法度量多图的相似度[J]. 吉林大学学报(工学版), 2018, 48(2): 526-532.
[14] 杨欣, 夏斯军, 刘冬雪, 费树岷, 胡银记. 跟踪-学习-检测框架下改进加速梯度的目标跟踪[J]. 吉林大学学报(工学版), 2018, 48(2): 533-538.
[15] 刘雪娟, 袁家斌, 许娟, 段博佳. 量子k-means算法[J]. 吉林大学学报(工学版), 2018, 48(2): 539-544.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!