吉林大学学报(工学版) ›› 2019, Vol. 49 ›› Issue (5): 1471-1477.doi: 10.13229/j.cnki.jdxbgxb20181270

• • 上一篇    

考虑通勤需求的电动汽车充电站选址与定容模型

罗清玉(),田万利,贾洪飞()   

  1. 吉林大学 交通学院,长春 130022
  • 收稿日期:2018-12-24 出版日期:2019-09-01 发布日期:2019-09-11
  • 通讯作者: 贾洪飞 E-mail:luoqy@jlu.edu.cn;jiahf@jlu.edu.cn
  • 作者简介:罗清玉(1981-),女,副教授,博士.研究方向:交通系统规划.E-mail:luoqy@jlu.edu.cn
  • 基金资助:
    教育部人文社科研项目(19YJCZH189)

Location and capacity model of electric vehicle charging station considering commuting demand

Qing-yu LUO(),Wan-li TIAN,Hong-fei JIA()   

  1. College of Transportation, Jilin University, Changchun 130022, China
  • Received:2018-12-24 Online:2019-09-01 Published:2019-09-11
  • Contact: Hong-fei JIA E-mail:luoqy@jlu.edu.cn;jiahf@jlu.edu.cn

摘要:

为满足电动汽车通勤用户在工作地点附近的充电需求,构建了以充电站建设成本和用户广义充电成本最小为目标的充电站选址和定容模型。引入了便捷系数量化用户的充电期望以得到充电站需要服务的电动汽车数量和电能需求。计算实例表明:充电站选址对便捷系数阈值不敏感,但建设经济性随便捷系数阈值的减小而变差,由此提出了不同规划目标下便捷系数阈值取值范围的建议。

关键词: 交通运输规划与管理, 充电站选址定容, 弹性需求分析, 充电成本, 便捷系数

Abstract:

In order to meet the charging demand of electric vehicle for commute users near their workplace, a charging station location and capacity model is constructed. The objectives are to minimize the cost of building charging station and minimize the generalized charging cost of users. The convenience factor is introduced to quantify the charging expectation of the user to obtain the number of electric vehicles and the power demand of the charging station. The calculation example shows that the location of charging station is not sensitive to the threshold of convenience coefficient, but the economy of construction becomes worse with the decrease in the threshold of convenience coefficient. Therefore, the range of the threshold value of convenience coefficient under different programming objectives is suggested.

Key words: transportation planning and management, location and capacity determination of charging station, elastic demand analysis, charging cost, convenience coefficient

中图分类号: 

  • U491

图1

研究区域及备选站点"

表1

备选站点电动汽车数量和各等级充电设施建设成本"

地点电动汽车数量/辆单位快充建设成本/元单位慢充建设成本/元
总计3 782--
144011 7003 900
243211 5003 700
342511 4003 600
440911 1303 500
541411 7003 900
644711 5003 700
742011 2003 300
847111 4003 600
941411 9004 100

表2

快充和慢充功率及辅助设备成本"

设备等级辅助设备成本/元充电设备效率/kw每小时充电增加的公里数/(km·h-1)
慢充30 0001510
快充100 0009080

表3

各等级电动汽车比重、行驶里程及充电时间"

组别所占比重/%单程行驶里程/km慢充充电时间/h快充充电时间/h
1291~100.70.26
22211~201.70.39
31721~302.70.51
41031~403.70.64
5741~504.70.76
6551~605.70.89
7361~706.71.01
88>708.71.26

表4

用户广义充电成本计算公式参数取值"

参 数数值参 数数值
WB/元9 000TW/h8
WD/天251Vw/(km·h-1)4

表5

模型相关参数取值"

参数数值参数数值
K1Y/年5
Gj1ω10.5
TD/km1ω20.5
R/km0.5

图2

充电站选址及服务范围"

表6

各充电站充电设配备情况及建设成本"

阈值站点快充数量慢充数量建设费用/元
12118221 568 400
5131241 756 300
785171 138 100
1027211998 700
593111 261 000
76114859 400
202598838 100
57291 007 500
76114859 400
2330479 500
5390556 300
7180301 600

图3

四种不同阈值下建设总成本变化"

图4

四种不同阈值下电能总需求和汽车数量变化"

1 DongJ, LinZ. Within-day recharge of plug-in hybrid electric vehicles: energy impact of public charging infrastructure[J]. Transportation Research Part D: Transport and Environment, 2012, 17(5): 405-412.
2 NieY, GhamamiM, ZockaieA, et al. Optimization of incentive polices for plug-in electric vehicles[J]. Transportation Research Part B: Methodological, 2016, 84: 103-123.
3 NieY, GhamamiM. A corridor-centric approach to planning electric vehicle charging infrastructure[J]. Transportation Research Part B: Methodological, 2013, 57: 172-190.
4 HeF, YinY, ZhouJ. Deploying public charging stations for electric vehicles on urban road networks[J]. Transportation Research Part C: Emerging Technologies, 2015, 60: 227-240.
5 程宏波, 肖永乐, 王勋, 等. 基于引力模型的电动汽车充电站选址规划[J]. 电工电能新技术, 2016, 35(5): 61-66.
ChengHong-bo, XiaoYong-le, WangXun, et al. Site planning of electric vehicles charging station based on gravity model[J]. Advanced Technology of Electrical Engineering & Energy, 2016, 35(5): 61-66.
6 HuangY, ZhouY. An optimization framework for workplace charging strategies[J]. Transportation Research Part C: Emerging Technologies, 2015, 52: 144-155.
7 ZhuZ H, GaoZ Y, ZhengJ F, et al. Charging station location problem of plug-in electric vehicles[J]. Journal of Transport Geography, 2016, 52: 11-22.
8 YangY, YaoE, YangZ, et al. Modeling the charging and route choice behavior of BEV drivers[J]. Transportation Research Part C: Emerging Technologies, 2016, 65: 190-204.
9 SunX, YamamotoT, MorikawaT. Charge timing choice behavior of battery electric vehicle users[J]. Transportation Research Part D: Transport and Environment, 2015, 37: 97-107.
10 DongJ, LiuC, LinZ. Charging infrastructure planning for promoting battery electric vehicles: an activity-based approach using multiday travel data[J]. Transportation Research Part C: Emerging Technologies, 2014, 38: 44-55.
11 PearreN S, KemptonW, GuenslerR L, et al. Electric vehicles: how much range is required for a day’s driving[J]. Transportation Research Part C: Emerging Technologies, 2011, 19(6): 1171-1184.
[1] 曹骞, 李君, 刘宇, 曲大为. 基于马尔科夫链的长春市乘用车行驶工况构建[J]. 吉林大学学报(工学版), 2018, 48(5): 1366-1373.
[2] 孙宝凤, 高坤, 申琇秀, 梁婷. 基于能力平衡和变覆盖半径的加油站网络扩充选址模型[J]. 吉林大学学报(工学版), 2018, 48(3): 704-711.
[3] 徐亮,程国柱. 基于车速离散度和经济车速的高速公路最低车速限制[J]. 吉林大学学报(工学版), 2010, 40(03): 661-0665.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!