吉林大学学报(工学版) ›› 2021, Vol. 51 ›› Issue (4): 1476-1481.doi: 10.13229/j.cnki.jdxbgxb20200398

• 通信与控制工程 • 上一篇    

多通道联合调偏流机构的CMOS面阵成像方法

张刘(),沈亮,王文华(),刘赫   

  1. 吉林大学 仪器科学与电气工程学院,长春 130012
  • 收稿日期:2020-06-08 出版日期:2021-07-01 发布日期:2021-07-14
  • 通讯作者: 王文华 E-mail:zhangliu@jlu.edu.cn;wangwh900@jlu.edu.cn
  • 作者简介:张刘(1978-),男,教授,博士.研究方向:航天光学遥感系统设计,星敏感器技术.E-mail: zhangliu@jlu.edu.cn
  • 基金资助:
    科技部重点研发计划项目(2016YFB0501000);科工局国防基础科研重点突破项目;装备预研领域基金项目(JZX7Y20190254047001);上海航天科技创新基金项目(SAST2018046);国防基础科研计划项目(JCKY2019110)

CMOS array imaging method of coordinated multichannel based on drift angle adjusting mechanism

Liu ZHANG(),Liang SHEN,Wen-hua WANG(),He LIU   

  1. College of Instrumentation & Electrical Engineering,Jilin University,Changchun 130012,China
  • Received:2020-06-08 Online:2021-07-01 Published:2021-07-14
  • Contact: Wen-hua WANG E-mail:zhangliu@jlu.edu.cn;wangwh900@jlu.edu.cn

摘要:

现有的探测器分片旋转调整偏流角方式虽然能提高偏流角的匹配精度,但会使得焦面上采取光学拼接的探测器所合成图像不连续。针对以上问题,设计了一套基于CMOS图像传感器GMAX3265和FPGA的电子学成像系统,此系统利用CMOS图像传感器开窗模式,实现了相邻探测器所合成图像中非连续部分的裁剪,从而形成了连续的图像条带。首先,对比分析了探测器采取光学拼接时,传统调偏流方法和探测器分片旋转调偏流方法所合成图像的差异;其次,通过几何关系求出被裁减行数并分析了裁剪精度;最后,通过系统总体设计和驱动时序设计完成了这套电子学系统。实验结果表明,相邻探测器旋转角度差为0.1°时,误差像素数与总像素数之比为0.1165%,不会丢失过多的图像细节,提高了图像连续性。

关键词: 分片旋转, 光学拼接, 不连续, CMOS图像传感器, 开窗

Abstract:

Although the existing method of rotation of each sensor can improve the matching accuracy of the drift angle,it results in the discontinuity of the image synthesized by the detector with optical butting on the focal plane. In order to solve the above problems, an electronic imaging system based on CMOS image sensor GMAX3265 and FPGA is designed. The system uses the windowing mode of CMOS image sensor to Real-time clipping the nonlinear part of the image synthesized by adjacent detectors, thus forming a continuous image strip. Firstly, the difference between the traditional drift angle compensation method and the slice rotation drift angle compensation method is compared and analyzed when the detector adopts optical butting. Secondly, the number of cutting rows is calculated and the cutting precision is analyzed. Finally, the electronic system is completed through the overall system design and driving timing design. The experimental results show that when the rotation angle difference between adjacent detectors is 0.1 °, the ratio of error pixels to total pixels is 0.1165%, which does not lose too much image and improves image continuity.

Key words: rotation of each sensor, optical butting, discontinuity, CMOS image sensor, windowing

中图分类号: 

  • V443.5

图1

传统调偏流所成图像"

图2

新型调偏流法所成图像"

图3

相邻探测器几何关系"

表1

CORDIC算法精度"

输入值

/(°)

sinθcosθ
FPGA仿真值MATLAB计算值误差值FPGA仿真值MATLAB计算值误差值
0.50.999 962 3300.999 961 9234.067 98e-070.008 666 9920.008 726 5355.954 31e-05
10.999 847 4120.999 847 6952.830 39e-070.017 455 1010.017 452 4072.694 10e-06
1.50.999 658 5850.999 657 3251.259 62e-060.026 119 9470.026 176 9495.700 11e-05
20.999 390 6020.999 390 8272.249 09e-070.034 904 9570.034 899 4975.460 15e-06
2.50.999 050 3790.999 048 2222.157 20e-060.043 565 2730.043 619 3875.411 38e-05
30.998 628 8550.998 629 5356.799 80e-070.052 344 3220.052 335 9578.365 52e-06
3.50.998 137 7120.998 134 7982.914 07e-060.060 997 2480.061 048 5405.129 20e-05

图4

系统结构框图"

图5

SPI驱动时序"

图6

CORDIC算法驱动时序"

图7

开窗前拼接图像"

图8

开窗后拼接图像"

1 任三孩,范翔,张帆,等. 空间光学平台调偏流分析[J]. 飞行器测控学报, 2017, 36(4): 281-286.
Ren San-hai, Fan Xiang, Zhang Fan,et al. Analysis of Drift Adjusting by a Space Optical Camera Platform[J]. Journal of Spacecraft TT&C Technology, 2017, 36(4): 281-286.
2 温渊,张大伟. 品字形拼接探测器偏流角补偿研究[J]. 上海航天, 2017, 34(2): 127-133.
Wen Yuan, Zhang Da-wei. Drift angle compensation study of interleaving assembly focal plane[J]. Aerospace Shanghai, 2017, 34(2): 127-133.
3 吴俊,李娜,许云飞,等.超敏捷卫星动中成像模式下成像质量研究[J]. 光学与光电技术, 2018, 16(5): 83-89.
Wu Jun, Li Na, Xu Yun-fei, et al. Research on imaging quality of super agile satellite with dynamic imaging mode[J]. Optics & Optoelectronic Technology, 2018, 16(5):83-89.
4 李永昌,金龙旭,李国宁,等. 宽视场遥感相机像移速度模型及补偿策略[J]. 武汉大学学报:信息科学版, 2018, 43(8): 1278-1286.
Li Yong-chang, Jin Long-xu, Li Guo-ning, et al. Image motion velocity model and compensation strategy of wide-field remote sensing camera[J]. Geomatics and Information Science of Wuhan University, 2018, 43(8): 1278-1286.
5 李永昌. 敏捷卫星相机像移补偿关键技术研究[D]. 长春:长春光学精密机械与物理研究所, 2016.
Li Yong-chang. Study on key technology of image motion compensationof agile satellite camera[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, China, 2016.
6 李伟雄. 高分辨率空间相机敏捷成像的像移补偿方法研究[D]. 长春:长春光学精密机械与物理研究所, 2012.
Li Wei-xiong. Research on method of image motion compensation of high resolution space cameras' collecting scene agilely[D]. Changchun:Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, China, 2012.
7 谷松,徐振. 新型空间相机偏流角调整方法[J]. 红外与激光工程, 2014, 43(): 209-213.
Gu Song, Xu Zhen. New drift adjusting method of space camera[J]. Infrared and Laser Engineering, 2014, 43(Sup.1): 209-213.
8 刘妍妍. 大视场长焦平面TDI CCD拼接相机最优成像技术研究[D]. 长春:吉林大学仪器科学与电气工程学院, 2016.
Liu Yan-yan. Research on optimal imaging technology of multi-TDICCD assembling camera with large field and long focal plane[D]. Changchun:College of Instrument Science and Electrical Engineering, Jilin University, 2016.
9 褚备,李富强,常君磊. 光学拼接焦平面重叠像元数计算[J]. 光电工程, 2016, 43(12): 99-103.
Chu Bei, Li Fu-qiang, Chang Jun-lei. Calculation of overlapping pixels in focal plane based on optical butting[J]. Opto-Electronic Engineering, 2016, 43(12): 99-103.
10 王伟,李林. 反射式光学像面拼接方法研究[J]. 光子学报, 2014, 43(3): 80-86.
Wang Wei, Li Lin. Reflector mirror based optical butting[J]. Acta Photonica Sinica, 2014, 43(3): 80-86.
11 林雅宾. 基于仿视网膜分布CMOS探测器的实时图像消旋技术研究[D]. 北京:北京理工大学光电学院, 2016.
Lin Ya-bin. Research on real-time image rotation-elimination based on a retina-like sensor[D]. Beijing: School of Optics and Photorics, Beijing Institute of Technology, 2016.
12 马精格. CCD与CMOS图像传感器的现状及发展趋势[J]. 电子技术与软件工程, 2017,6(13): 103.
Ma Jing-ge. Current situation and development trendency of CCD and CMOS image sensors[J]. Electronic Technology & Software Engineering, 2017,6(13): 103.
13 谢玉婷,安源,贾学志,等. 宽幅相机一体化焦面调整机构设计与精度分析[J]. 机械设计与制造, 2018, 55(3): 212-215.
Xie Yu-ting, An Yuan, Jia Xue-zhi, et al. Design and accuracy analysis of integrated adjusting mechanism for the focal plane in wide camera[J]. Machinery Design & Manufacture, 2018,55(3): 212-215.
14 陈彦来. 基于CORDIC算法的直角坐标与球面坐标变换电路的FPGA实现[J]. 舰船电子对抗, 2011, 34(1): 72-75, 90.
Chen Yan-lai. FPGA realization of transformation circuit between rectangular coordinate and spherical coordinate based on CORDIC algorithm[J]. Shipboard Electronic Countermeasure, 2011, 34(1): 72-75, 90.
15 张伟,张安堂,肖宇. 基于坐标旋转数字计算方法的三维坐标变换[J]. 探测与控制学报, 2011, 33(2): 73-76, 80.
Zhang Wei, Zhang An-tang, Xiao Yu. CORDIC based three-dimensional coordinate transform[J]. Journal of Detection & Control, 2011, 33(2): 73-76, 80.
[1] 丁宁, 常玉春, 赵健博, 王超, 杨小天. 基于USB 3.0的高速CMOS图像传感器数据采集系统[J]. 吉林大学学报(工学版), 2018, 48(4): 1298-1304.
[2] 陈鸣, 陈杰, 肖璟博. 一种应用于CMOS图像传感器的流水线模数转换器设计[J]. 吉林大学学报(工学版), 2018, 48(3): 968-976.
[3] 周津,姚素英,徐江涛,胡燕翔. 新型选择性复位CMOS图像传感器电路结构[J]. 吉林大学学报(工学版), 2006, 36(02): 227-0231.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!