吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (8): 1918-1925.doi: 10.13229/j.cnki.jdxbgxb20220263
• 通信与控制工程 • 上一篇
李雪梅1,2(),王春阳1,3(),刘雪莲3,施春浩1,李国瑞1
Xue-mei LI1,2(),Chun-yang WANG1,3(),Xue-lian LIU3,Chun-hao SHI1,Guo-rui LI1
摘要:
针对点云数据冗余和配准精度低的问题,提出了一种基于超体素的双向最近邻距离比匹配的配准方法。首先,利用超体素提取了具有稳定结构的目标特征点,同时提出了利用点云厚度分层进行非迭代的阈值去噪方法;然后,利用FPFH进行特征描述,提出了双向最近邻距离比方法对点云进行了初始配准;最后,提出了基于双级阈值的点云精确配准方法。采用标准数据库模型进行仿真分析,验证了算法的有效性。结果表明:本方法能有效剔除漂移噪声体素,配准精度高,鲁棒性强。与其他方法对比,在配准时间相近时,本文算法的配准精度提高74.2%;在噪声占比为6%和10%时,配准精度均提高67%以上。
中图分类号:
1 | 党相卫, 秦斐, 卜祥玺, 等. 一种面向智能驾驶的毫米波雷达与激光雷达融合的鲁棒感知算法[J]. 雷达学报, 2021, 10(4): 622-631. |
Dang Xiang-wei, Qin Fei, Bu Xiang-xi,et al. A robust perc-eption algorithm based on a radar and lidar for intelligent driving[J]. Journal of Radars, 2021, 10(4): 622-631. | |
2 | 王岩, 王飞, 王挺峰, 等. 基于自适应阈值的阵列激光三维点云配准[J]. 物理学报, 2016, 65(24): 271-281. |
Wang Yan, Wang Fei, Wang Ting-feng, et al. Laser array imaging point cloud registration based on adaptive threshold[J].Acta Physica Sinica, 2016, 65(24): 271-281. | |
3 | 王庆闪, 张军, 刘元盛, 等. 基于NDT与ICP结合的点云配准算法[J]. 计算机工程与应用, 2021, 56(7): 88-95. |
Wang Qing-shan, Zhang Jun, Liu Yuan-sheng, et al. Point cloud registration algorithm based on combination of NDT and ICP[J]. Computer Engineering and Applications, 2021, 56(7): 88-95. | |
4 | Chen C, Li Y, Wang W. A 3D sequential LiDAR data registration method for unmanned ground vehicle[J]. Applied Mechanics and Materials, 2014, 664: 365-370. |
5 | 闫利, 索一凡, 曹亮. 车载激光雷达点云与全景图像的配准[J]. 测绘科学, 2016, 41(4): 113-123. |
Yan Li, Suo Yi-fan, Cao Liang. Registration of vehicle-bo-rne LiDAR point cloud and panoramic image[J]. Science of Surveying and Mapping, 2016, 41(4): 113-123. | |
6 | He Y Q, Mei Y G.An efficient registration algo-rithm based on spin image for LiDAR 3D point cloud models[J]. Neurocomputing, 2015, 151: 354-363. |
7 | Zong W P, Li M L, Zhou Y L, et al. A fast and accurate planar-feature-based global scan registration method[J].IEEE Sensors Journal, 2019, 19(24): 12333-12345. |
8 | 陈学伟,朱耀麟,武桐, 等. 基于SAC-IA和改进ICP算法的点云配准技术[J]. 西安工程大学学报, 2017, 31(3): 395-401. |
Chen Xue-wei, Zhu Yao-lin, Wu Tong, et al. The point cloud registration technology based on SAC-IA and improved ICP[J]. Journal of Xi'an Polytechnic University, 2017, 31(3): 395-401. | |
9 | 赵海鹏,习晓环,王成, 等.基于车载激光扫描数据的城区道路自动提取[J]. 中国科学院大学学报, 2018, 35(6): 782-787. |
Zhao Hai-peng, Xi Xiao-huan, Wang Cheng, et al. Automatic extraction of urban road information based on mobile laser scanning data[J]. Journal of University of Chinese Academy of Sciences, 2018, 35(6): 782-787. | |
10 | 王新竹,李骏,李红建, 等.基于三维激光雷达和深度图像的自动驾驶汽车障碍物检测方法[J]. 吉林大学学报: 工学版, 2016, 46(2): 360-365. |
Wang Xin-zhu, Li Jun, Li Hong-jian, et al. Obstacle detection based on 3D laser scanner and range image for intelligent vechicle[J]. Journal of Jilin University(Engineering and Technology Edition), 2016, 46(2): 360-365. | |
11 | 宗长富, 文龙, 何磊. 基于欧几里得聚类算法的三维激光雷达障碍物检测技术[J]. 吉林大学学报: 工学版, 2020, 50(1): 107-113. |
Zong Chang-fu, Wen Long, He Lei. Object detection based on Euclidean clustering algorithm with 3D laser scanner[J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 107-113. | |
12 | 吴永兴. 利用超体素的车载激光点云杆状目标的提取[J]. 测绘地理信息, 2021, 46(4): 77-81. |
Wu Yong-xing. Extracting pole-like objects in mobile laser scanning data with supervoxels[J]. Journal of Geomatics, 2021, 46(4): 77-81. | |
13 | Yu Y T, Li J, Guan H Y, et al. Automated extraction of urban road facilities using mobile laser scanning data[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(4): 2167-2181. |
14 | 赵成伟, 吴云东, 蔡国榕, 等. 基于超体素的LiDAR点云粘连目标分割算法[J]. 集美大学学报: 自然科学版, 2017, 22(1): 73-80. |
Zhao Cheng-wei, Wu Yun-dong, Cai Guo-rong, et al. Research of segmentation algorithm for LiDAR point cloud based on supervoxel[J]. Journal of Jimei University(Natural Science), 2017, 22(1): 73-80. | |
15 | Li Y C, Liu Y, Sun R, et al. Multi-view point cloud registration with adaptive convergence threshold and its application on 3D model retrieval[J]. Multimedia Tools and Applications, 2020, 79: 14793-14810. |
16 | Zhou S T, Liu X L, Wang C Y, et al. Non-iterative denoising algorithm based on a dual threshold for a 3D point cloud[J]. Optics and Lasers in Engineering, 2020, 126 :105921. |
17 | 陈春旭,漆钰晖,朱一帆, 等. ICP配准算法的影响因素及评价指标分析[J]. 导航定位与授时, 2018, 5(5): 67-72. |
Chen Chun-xu, Qi Yu-hui, Zhu Yi-fan, et al. The analysis of influence factors and evaluation indexes on ICP algorithm[J]. Navigation Positioning Timing,2018, 5(5): 67-72. | |
18 | Meng Y, Zhang H. Registration of point clouds using sample-sphere and adaptive distance restriction[J]. Visual Computer, 2011, 27(6-8): 543-553. |
[1] | 李雪梅,王春阳,刘雪莲,谢达. 基于SESTH的线性调频连续波激光雷达信号时延估计[J]. 吉林大学学报(工学版), 2022, 52(4): 950-958. |
[2] | 窦慧晶,丁钢,高佳,梁霄. 基于压缩感知理论的宽带信号波达方向估计[J]. 吉林大学学报(工学版), 2021, 51(6): 2237-2245. |
[3] | 金心宇,谢慕寒,孙斌. 基于半张量积压缩感知的粮情信息采集[J]. 吉林大学学报(工学版), 2021, 51(1): 379-385. |
[4] | 郭立民,陈鑫,陈涛. 基于AlexNet模型的雷达信号调制类型识别[J]. 吉林大学学报(工学版), 2019, 49(3): 1000-1008. |
|