吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (9): 2096-2106.doi: 10.13229/j.cnki.jdxbgxb20220325

• • 上一篇    

风光发电与新能源汽车协同优化调度策略

马苗苗1(),刘立成1,王鑫2,杨茂3   

  1. 1.华北电力大学 控制与计算机工程学院,北京 102206
    2.北京经纬恒润科技股份有限公司,北京 100191
    3.东北电力大学 现代电力系统仿真控制与绿色电能新技术教育部重点实验室,吉林省 吉林市 132012
  • 收稿日期:2022-03-29 出版日期:2022-09-01 发布日期:2022-09-13
  • 作者简介:马苗苗(1982-),女,教授,博士生导师. 研究方向:模型预测控制,新能源电力系统优化与控制,车辆控制与智能化. E-mail:mamm@ncepu.edu.cn
  • 基金资助:
    国家自然科学基金项目(61873091);国家重点研发计划项目(2020YFB1506600);东北电力大学现代电力系统仿真控制与绿色电能新技术教育部重点实验室开放课题项目(MPSS2021-03)

Coordinated optimal dispatch strategy of wind and photovoltaic power generation and new energy vehicles

Miao-miao MA1(),Li-cheng LIU1,Xin WANG2,Mao YANG3   

  1. 1.School of Control and Computer Engineering,North China Electric Power University,Beijing 102206,China
    2.Beijing HiRain Technologies Co. ,Ltd. ,Beijing 100191,China
    3.Key Laboratory of Modern Power System Simulation and Control & Renewable Energy Technology,Northeast Electric Power University,Ministry of Education,Jilin 132012,China
  • Received:2022-03-29 Online:2022-09-01 Published:2022-09-13

摘要:

针对新能源汽车无序充电给电力系统带来的负荷压力等问题,提出了一种新能源汽车与风光发电协同优化调度策略。首先,建立了新能源汽车动力电池模型,并提出了基于蒙特卡洛模拟法的充电负荷计算方法。其次,基于风光发电原理建立了风力发电和光伏发电的数学模型。最后,以最小化电网等效负荷标准差为目标,利用有效集算法求解了二次规划问题,得到了新能源汽车的最优充放电调度策略。仿真结果表明:本文所提出的协同优化调度策略能够有效降低大规模新能源汽车无序充电加剧的电网负荷峰谷差。

关键词: 新能源汽车, 动力电池, 风光发电, 协同优化

Abstract:

A coordinated optimal dispatch strategy of wind and photovoltaic generation and new energy vehicles was proposed for the problem, which is caused by large-scale new energy vehicles disorderly charging in power grid. Firstly, the model of new energy vehicles power battery was built, and a calculation method of charging load based on Monte Carlo method was proposed. Secondly, based on the principle of wind and photovoltaic power generation, the mathematical models of wind power generation and photovoltaic power generation were established. Finally, The objective function of the dispatch strategy is to minimize the standard deviation of the comprehensive load of the power grid, and the active set algorithm was utilized to solve the quadratic programming problem to obtain the coordinated optimal dispatch strategy. The simulation results show that the strategy can effectively avoid the aggravating difference between peak and valley load, which is caused by large-scale new energy vehicles disorderly charging in power grid.

Key words: new energy vehicle, power battery, wind and photovoltaic generation, coordinated optimal

中图分类号: 

  • U469.72

图1

动力电池工作原理"

图2

GNL等效电路电池模型"

图3

新能源汽车日行驶里程分布"

图4

新能源汽车起始充电时间分布"

图5

基于蒙特卡洛法的充电负荷计算流程图"

图6

光伏电池工作原理图"

图7

光伏电池输出特性"

图8

新能源汽车无序充电负荷曲线"

图9

新能源汽车无序充电对为电网的影响"

图10

典型日平均风速"

图11

风电机组输出功率"

图12

光伏发电输出功率"

图13

计及可再生能源发电和新能源汽车无序充电的等效负荷曲线"

图14

新能源汽车有序充放电曲线"

图15

优化前、后充电负荷曲线对比图"

图16

优化前、后电网负荷曲线对比图"

表1

优化前、后电网系统指标对比"

峰值负荷/kW谷值负荷/kW峰谷差/kW峰谷差率/%标准差/kW
基础负荷38001023277773973

计及无序

充电负荷

4633.7838.73795821390

协同优化

后总负荷

2646.81417.51229.346337
1 文云峰, 杨伟峰, 汪荣华, 等. 构建100%可再生能源电力系统述评与展望[J]. 中国电机工程学报, 2020, 40(6): 1843-1856.
Wen Yun-feng, Yang Wei-feng, Wang Rong-hua, et al. Review and prospect of toward 100% renewable energy power systems[J]. Proceedings of the CSEE, 2020, 40(6): 1843-1856.
2 卓振宇, 张宁, 谢小荣, 等. 高比例可再生能源电力系统关键技术及发展挑战[J]. 电力系统自动化, 2021, 45(9): 171-191.
Zhuo Zhen-yu, Zhang Ning, Xie Xiao-rong, et al. Key technologies and developing challenges of power system with high proportion of renewable energy[J]. Automation of Electric Power Systems, 2021, 45(9): 171-191.
3 师瑞峰, 李少鹏. 电动汽车V2G问题研究综述[J].电力系统及其自动化学报, 2019, 31(6): 28-37.
Shi Rui-feng, Li Shao-peng. Review on studies of V2G problem in electric vehicles[J]. Proceedings of the CSU-ESPA, 2019, 31(6): 28-37.
4 张学清, 梁军, 张利, 等. 计及风光电源的一种地区电网电动汽车充电调度方法[J]. 电工技术学报, 2013, 28(2): 28-35.
Zhang Xue-qing, Liang Jun, Zhang Li, et al. Approach for plug-in electric vehicles charging scheduling considering wind and photovoltaic power in chinese regional power grids[J]. Transactions of China Electrotechnical Society, 2013, 28(2): 28-35.
5 王惠洲, 于艾清. 基于联盟区块链交易平台的电动汽车有序充电相对鲁棒优化[J]. 中国电力, 2019, 52(8): 126-134.
Wang Hui-zhou, Yu Ai-qing. Relative robust optimization of coordinated charging of electric vehicles based on the consortium blockchain trading platform[J]. Electric Power, 2019, 52(8): 126-134.
6 冉忠, 刘文颖, 荣俊杰, 等. 电动汽车参与受阻风电消纳的源荷优化控制方法[J]. 可再生能源, 2020, 38(3): 358-365.
Ran Zhong, Liu Wen-ying, Rong Jun-jie, et al. Source-load optimization control method for electric vehicles participating in blocked wind power consumption[J]. Renewable Energy Resources, 2020, 38(3): 358-365.
7 赵俊华, 文福拴, 薛禹胜, 等. 计及电动汽车和风电出力不确定性的随机经济调度[J]. 电力系统自动化, 2010, 34 (20): 22-29.
Zhao Jun-hua, Wen Fu-shuan, Xue Yu-sheng, et al. Power system stochastic economic dispatch considering uncertain outputs from plug-in electric vehicles and wind generators[J]. Automation of Electric Power Systems, 2010, 34(20): 22-29.
8 刘东奇, 王耀南, 袁小芳. 电动汽车充放电与风力/火力发电系统的协同优化运行[J]. 电工技术学报, 2017, 32(3): 18-26.
Liu Dong-qi, Wang Yao-nan, Yuan Xiao-fang. Cooperative dispatch of large-scale electric vehicles with wind-thermal power generating system[J]. Transactions of China Electrotechnical Society, 2017, 32(3): 18-26.
9 茆美琴, 孙树娟, 苏建徽. 包含电动汽车的风/光/储电网经济性分析[J]. 电力系统自动化, 2011, 35(14): 30-35.
Mao Mei-qin, Sun Shu-juan, Su Jian-hui. Economic analysis of a microgrid with wind /photovoltaic/ storages and electric vehicles[J]. Automation of Electric Power Systems, 2011, 35(14): 30-35.
10 袁桂丽, 王宝源. 含电动汽车的虚拟电厂经济性优化调度[J]. 太阳能学报, 2019, 40(8): 2395-2404.
Yuan Gui-li, Wang Bao-yuan. Economic optimal dispatch of virtual power plant with electric vehicles[J]. Acta Energiae Solaris Sinica, 2019, 40(8): 2395-2404.
11 刘树林. 电动汽车用锂离子动力电池建模与状态估计研究[D]. 济南: 山东大学控制科学与工程学院, 2017.
Liu Shu-lin. Research on modeling and state estimation of lithium-ion power battery for electric vehicles[D]. Jinan: School of Control Science and Engineering, Shandong University, 2017.
12 肖岩, 龚春忠, 张洪雷. 基于Simulink的动力锂离子电池建模研究[J]. 汽车实用技术, 2018, 42(22): 14-16.
Xiao Yan, Gong Chun-zhong, Zhang Hong-lei. Modeling of power lithium ion battery based on Simulink[J]. Automobile Applied Technology, 2018, 42(22): 14-16.
13 李昊阳. 电动汽车锂电池建模及SOC估算方法研究[D]. 长春: 吉林大学仪器科学与电气工程学院, 2020.
Li Hao-yang. Research on modeling and SOC estimation of lithium battery for electric vehicle[D]. Changchun: College of Instrumentation & Electrical Engineering, Jilin University, 2020.
14 Clement-Nyns K, Haesen E, Driesen J. The impact of charging plug-in hybrid electric vehicles on a residential distribution grid[J]. IEEE Transactions on Power Systems, 2010, 25(1): 371-380.
15 Zheng Wen-di, Li Yi-xin, Zhang Min, et al. Reliability evaluation and analysis for NEV charging station considering the impact of charging experience[J]. International Journal of Hydrogen Energy, 2022, 47(6): 3980-3993.
16 李含玉, 杜兆斌, 陈丽丹, 等. 基于出行模拟的电动汽车充电负荷预测模型及V2G评估[J]. 电力系统自动化, 2019, 43(21): 88-96.
Li Han-yu, Du Zhao-bin, Chen Li-dan, et al. Trip simulation based charging load forecasting model and vehicle-to-grid evaluation of electric vehicles[J]. Automation of Electric Power Systems, 2019, 43(21): 88-96.
17 陈丽丹, 聂涌泉, 钟庆. 基于出行链的电动汽车充电负荷预测模型[J]. 电工技术学报, 2015, 30(4): 216-225.
Chen Li-dan, Nie Yong-quan, Zhong Qing. A model for electric vehicle charging load forecasting based on trip chains[J]. Transactions of China Electrotechnical Society, 2015, 30(4): 216-225.
18 罗卓伟, 胡泽春, 宋永华, 等. 电动汽车充电负荷计算方法[J]. 电力系统自动化, 2011, 35(14): 36-42.
Luo Zhuo-wei, Hu Ze-chun, Song Yong-hua, et al. Study on plug-in electric vehicles charging load calculating[J]. Transactions of China Electrotechnical Society, 2011, 35(14): 36-42.
19 秦大同, 李超, 唐飞熊. 变风载下变速风力发电机传动系统动力学特性研究[J]. 太阳能学报, 2013, 34(2): 186-195.
Qin Da-tong, Li Chao, Tang Fei-xiong. Study on dynamic characteristics of gear transmission system of variable speed wind generation under varying wind load[J]. Acta Energiae Solaris Sinica, 2013, 34(2): 186-195.
20 马苗苗, 邵黎阳, 刘向杰. 分布式预测控制在微电网协调控制中的应用[J]. 吉林大学学报: 工学版, 2020, 50(6): 2258-2265.
Ma Miao-miao, Shao Li-yang, Liu Xiang-jie. Application of distributed predictive control in coordinated control of microgrid[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(6): 2258-2265.
21 赵兴勇, 王帅, 吴新华, 等. 含分布式电源和电动汽车的电网协调控制策略[J]. 电网技术, 2016, 40(12): 3732-3740.
Zhao Xing-yong, Wang Shuai, Wu Xin-hua, et al. Coordinated control strategy research of micro-grid including distributed generations and electric vehicles[J]. Power System Technology, 2016, 40(12): 3732-3740.
22 Li Shao-wu. Circuit parameter range of photovoltaic system to correctly use the MPP linear model of photovoltaic cell[J]. Energies, 2021, 14(13): 1-27.
23 Wang Shao-xin, Yang Hu. Conditioning theory of the equality constrained quadratic programming and its applications[J]. Linear and Multilinear Algebra, 2021, 69(6):1161-1183.
24 Kumari S, Srivastava S. Application of stochastic programming technique to solve interval quadratic programming problem[J]. International Journal of Applied and Computational Mathematics, 2021, 7(1): No.17.
[1] 朱凌,王秋成. 空间几何约束下新能源汽车驱动系统协调控制方法[J]. 吉林大学学报(工学版), 2022, 52(7): 1509-1514.
[2] 陈吉清,刘蒙蒙,兰凤崇. 三元动力电池及其成组后的过充安全性试验[J]. 吉林大学学报(工学版), 2019, 49(4): 1072-1080.
[3] 张向文, 高冠. 电动汽车动力电池绝缘电阻实时在线监测系统[J]. 吉林大学学报(工学版), 2017, 47(5): 1395-1402.
[4] 郭洪强, 何洪文, 卢兵. 电动汽车复合制动预测模型[J]. 吉林大学学报(工学版), 2015, 45(3): 696-702.
[5] 何耀, 刘兴涛, 张陈斌, 陈宗海. 基于动力电池组内阻模型的绝缘检测算法[J]. 吉林大学学报(工学版), 2013, 43(05): 1165-1170.
[6] 何磊, 宗长富, 江国华, 郑宏宇, 李刚. 线控转向汽车动力电池电量估计及容错控制方法[J]. 吉林大学学报(工学版), 2012, 42(增刊1): 17-21.
[7] 熊瑞, 何洪文, 许永莉, 何银. 电动汽车用动力电池组建模和参数辨识方法[J]. , 2012, 42(04): 809-815.
[8] 李杨, 王永武, 张火成, 张娜, 邹玉峰. 磷酸铁锂动力电池动态SOC状态下的分选[J]. 吉林大学学报(工学版), 2011, 41(增刊2): 331-333.
[9] 何洪文,熊瑞. 基于滑模观测器的锂离子动力电池荷电状态估计[J]. 吉林大学学报(工学版), 2011, 41(03): 623-628.
[10] 李邦国, 陈潇凯, 林逸. 协同优化方法的改进及应用[J]. 吉林大学学报(工学版), 2010, 40(06): 1497-1501.
[11] 赵红伟, 陈潇凯, 林逸. 电动汽车动力电池仓拓扑优化[J]. 吉林大学学报(工学版), 2009, 39(04): 846-850.
[12] 戴红,,杨兆升,肖萍萍. 交通流诱导与控制协同优化模型的遗传算法求解[J]. 吉林大学学报(工学版), 2006, 36(增刊1): 157-0160.
[13] 何洪文,余晓江 . 电动车辆动力电池的性能评价
[J]. 吉林大学学报(工学版), 2006, 36(05): 659-0663.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!