吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (2): 312-327.doi: 10.13229/j.cnki.jdxbgxb20220622
Guo WANG1,2(),Wen-kai GUO1,3,Chang-chun WANG1,3
摘要:
配电网的拓扑辨识是保障电力系统安全稳定运行的重要工作,可为配电网潮流计算、负载容量分配、故障范围诊断、电网状态估计等操作提供结构数据,是开展配电网系统分析的基础。本文将现有的配电网拓扑辨识研究分为两类:第一类方法基于历史拓扑信息,包含矩阵法、新息图法以及最优匹配法;第二类方法基于实时测量信息,包含相关性判断法、信号注入法、线性规划法以及机器学习法。对现有方法的适用范围、主要使用数据及特点进行了分析,在此基础上,对未来配电网的拓扑辨识工作做出了展望。
中图分类号:
1 | 程路, 邢璐.2030年碳排放达到峰值对电力发展的要求及影响分析[J]. 中国电力, 2016, 49(1): 174-177. |
Cheng Lu, Xing Lu. Analysis of requirement and impact of power development under the peak carbon emissions in 2030[J]. Electric Power, 2016, 49(1): 174-177. | |
2 | 赵剑波, 王蕾. “十四五”构建以新能源为主体的新型电力系统[J]. 中国能源, 2021, 43(5): 17-21. |
Zhao Jian-bo, Wang Lei. Research on the new power system during the "14th Five-Year" plan[J]. Energy of China, 2021, 43(5): 17-21. | |
3 | 贾巍, 雷才嘉, 葛磊蛟, 等. 城市配电网的国内外发展综述及技术展望[J]. 电力电容器与无功补偿, 2020, 41(1): 158-168. |
Jia Wei, Lei Cai-jia, Ge Lei-jiao, et al. Overview on domestic and international development of urban distribution network and technical prospect[J]. Power Capacitor & Reactive Power Compensation, 2020, 41(1): 158-168. | |
4 | 舒印彪, 陈国平, 贺静波, 等. 构建以新能源为主体的新型电力系统框架研究[J]. 中国工程科学, 2021, 23(6): 61-69. |
Shu Yin-biao, Chen Guo-ping, He Jing-bo, et al. Building a new electric power system based on new energy sources[J]. Strategic Study of CAE, 2021, 23(6): 61-69. | |
5 | 马进, 赵大伟, 钱敏慧, 等. 大规模新能源接入弱同步支撑直流送端电网的运行控制技术综述[J]. 电网技术, 2017, 41(10): 3112-3120. |
Ma Jin, Zhao Da-wei, Qian Min-hui, et al. Reviews of control technologies of large-scale renewable energy connected to weakly-synchronized sending-end dc power grid[J]. Power System Technology, 2017, 41(10): 3112-3120. | |
6 | 侯验秋, 丁一, 包铭磊, 等. 电-气耦合视角下德州大停电事故分析及对我国新型电力系统发展启示[J]. 中国电机工程学报, 2022, 42(21): 7764-7775. |
Hou Yan-qiu, Ding Yi, Bao Ming-lei, et al. Analysisof texas blackout from the perspective of electricity-gas coupling and its enlightenment to the development of chinese new power system[J]. Proceedings of the CSEE, 2022, 42(21):7764-7775. | |
7 | 吴争荣, 王钢, 李海锋, 等. 计及逆变型分布式电源控制特性的配电网故障分析方法[J]. 电力系统自动化, 2012, 36(18): 92-96. |
Wu Zheng-rong, Wang Gang, Li Hai-feng, et al. Fault characteristics analysis of distribution networks considering control scheme of inverter interfaced distributed generation[J]. Automation of Electric Power Systems, 2012, 36(18): 92-96. | |
8 | 刘洋, 王聪颖, 夏德明, 等. 电网故障导致大面积风电低电压穿越对电网频率的影响分析及措施[J]. 电网技术, 2021, 45(9): 3505-3514. |
Liu Yang, Wang Cong-ying, Xia De-ming, et al. Influence of large area wind power low voltage ride-through on power grid frequency caused by power grid faults[J]. Power System Technology, 2021, 45(9): 3505-3514. | |
9 | 马苗苗, 邵黎阳, 刘向杰.分布式预测控制在微电网协调控制中的应用[J].吉林大学学报: 工学版, 2020, 50(6): 2258-2265. |
Ma Miao-miao, Shao Li-yang, Liu Xiang-jie. Application of distributed predictive control in coordinated control of microgrid[J]. Journal of Jilin University (Engineering and Technology Edition). 2020, 50(6): 2258-2265. | |
10 | Weng Y, Liao Y Z, Ram R. Distributed energy resources topology identification via graphical modeling[J]. IEEE Transactions on Power Systems, 2017, 32(4): 2682-2694. |
11 | 董新洲, 汤涌, 卜广全, 等. 大型交直流混联电网安全运行面临的问题与挑战[J]. 中国电机工程学报, 2019, 39(11): 3107-3119. |
Dong Xin-zhou, Tang Yong, Bu Guang-quan, et al. Confronting problem and challenge of large scale AC-DC hybrid power grid operation[J]. Proceedings of the CSEE, 2019, 39(11): 3107-3119. | |
12 | 裴宇婷, 秦超, 余贻鑫. 基于LightGBM和DNN的智能配电网在线拓扑辨识[J]. 天津大学学报: 自然科学与工程技术版, 2020, 53(9): 939-950. |
Pei Yu-ting, Qin Chao, Yu Yi-xin. Online topology identification for smart distribution grids based on LightGBM and deep neural networks[J]. Journal of Tianjin University (Science and Technology), 2020, 53(9): 939-950. | |
13 | 杨秀, 蒋家富, 刘方, 等. 基于注意力机制和卷积神经网络的配电网拓扑辨识[J]. 电网技术, 2022, 46(5): 1672-1682. |
Yang Xiu, Jiang Jia-fu, Liu Fang, et al. Distribution network topology identification based on attention mechanism and convolutional neural network[J]. Power System Technology, 2022, 46(5): 1672-1682. | |
14 | Zhang J W, Wang Y, Weng Y, et al. Topology identification and line parameter estimation for Non-PMU distribution network: a numerical method[J]. IEEE Transactions on Smart Grid, 2020, 11(5): 4440-4453. |
15 | Zhang J W, Wang P, Zhang N. Distribution network admittance matrix estimation with linear regression[J]. IEEE Transactions on Power Systems, 2021, 36(5): 4896-4899. |
16 | 何欣, 井天军, 田昀, 等. 基于支路有功功率的拓扑错误辨识方法[J]. 电子器件, 2020, 43(3): 505-510. |
He Xin, Jing Tian-jun, Tian Yun, et al. Topology error identification method based on branches active power[J]. Chinese Journal of Electron Devices, 2020, 43(3): 505-510. | |
17 | 李虹, 张占龙, 高亚静. 一种配电网拓扑结构辨识方法的探讨[J]. 中国电力, 2015, 48(5): 133-138. |
Li Hong, Zhang Zhan-long, Gao Ya-jing. Research and discussion on a method for topology identification of distribution system[J]. Electric Power, 2015, 48(5): 133-138. | |
18 | 罗群, 刘春雨, 顾强, 等. 基于最优匹配回路功率的配电网拓扑辨识方法[J]. 电测与仪表, 2019, 56(19): 1-6. |
Luo Qun, Liu Chun-yu, Gu Qiang, et al. A topology identification method of distribution network based on optimal matching loop power[J]. Electrical Measurement & Instrumentation, 2019, 56(19): 1-6. | |
19 | 张艳军, 施毅斌, 周苏荃.新息图状态估计分块算法[J].哈尔滨工程大学学报, 2008, 29(11): 1166-1171. |
Zhang Yan-jun, Shi Yi-bin, Zhou Su-quan. Partitioning algorithm for innovation graph state estimation[J]. Journal of Harbin Engineering University, 2008, 29(11): 1166-1171. | |
20 | 潘毓笙, 秦超.基于两阶段特征选择和格拉姆角场的配电网拓扑辨识方法[J].电力系统自动化, 2022, 46(16): 170-177. |
Pan Yu-sheng, Qin Chao. Identification method for distribution network topology based on two-stage feature selection and gramian angular field[J]. Automation of Electric Power Systems, 2022, 46(16): 170-177. | |
21 | Davide G, Hortensia A, Pablo L. A deep neural network approach for online topology identification in state estimation[J]. IEEE Transactions on Power Systems, 2021, 36(6): 5824-5833. |
22 | Tian Z, Wu W C, Zhang B M. A mixed integer quadratic programming model for topology identification in distribution network[J]. IEEE Transactions on Power Systems, 2016, 31(1): 823-824. |
23 | Chen Y P, Fu Y T, Tan C, et al. Fault identification and reclosing technology for DG access to distribution network[C]∥4th International Conference on Intelligent Green Building and Smart Grid, Hubei, China, 2019: 466-470. |
24 | Qian C, Wang M Y, Gao D, et al. Topology identification method for primary distribution network with limited smart meter data[C]∥6th Asia Conference on Power and Electrical Engineering, Chongqing, China, 2021: 1611-1616. |
25 | 周苏荃, 柳焯. 负荷突变与拓扑错误及坏数据三者交叠情况下的识别问题[J]. 中国电机工程学报, 2002, 22(6): 7-11. |
Zhou Su-quan, Liu Zhuo. The identification of three simultaneous anormalies of sudden load change and topology error and bad data[J]. Proceedings of the CSEE, 2002, 22(6): 7-11. | |
26 | 杨志淳, 沈煜, 杨帆, 等. 基于数据关联分析的低压配电网拓扑识别方法[J]. 电测与仪表, 2020, 57(18): 5-11. |
Yang Zhi-chun, Shen Yu, Yang Fan, et al. Topology identification method of low voltage distribution network based on data association analysis[J]. Electrical Measurement & Instrumentation, 2020, 57(18): 5-11. | |
27 | 任鹏哲, 刘友波, 刘挺坚, 等.基于互信息贝叶斯网络的配电网拓扑鲁棒辨识算法[J]. 电力系统自动化, 2021, 45(9): 55-62. |
Ren Peng-zhe, Liu You-bo, Liu Ting-jian,et al. Robust identification algorithm for distribution network topology based on mutual-information Bayesian network[J]. Automation of Electric Power Systems, 2021, 45(9): 55-62. | |
28 | 孙伟, 朱世睿, 杨建平, 等.基于图卷积网络的微电网拓扑辨识[J].电力系统自动化, 2022, 46(5): 71-81. |
Sun Wei, Zhu Shi-rui, Yang Jian-ping, et al. Topology identification of microgrid based on graph convolutional network[J]. Automation of Electric Power Systems, 2022, 46(5): 71-81. | |
29 | 郭帅文, 燕跃豪, 蒋建东, 等. 基于邻接矩阵的网络拓扑辨识算法[J]. 电力系统保护与控制, 2018, 46(12): 50-56. |
Guo Shuai-wen, Yan Yue-hao, Jiang Jian-dong, et al. Network topology identification algorithm based on adjacency matrix[J]. Power System Protection and Control, 2018, 46(12): 50-56. | |
30 | 刘超, 王旭东, 苏彦卓, 等. 基于高级量测体系和图模型近邻估计的配电网拓扑辨识[J]. 济南大学学报: 自然科学版, 2020, 34(5): 527-532. |
Liu Chao, Wang Xu-dong, Su Yan-zhuo, et al. Topology identification of distribution networks via advanced metering infrastructure and graphical model neighbor estimation[J]. Journal of University of Jinan (Science and Technology), 2020, 34(5): 527-532. | |
31 | 刘雯静, 杨军, 陈振宁, 等. 基于改进人工免疫网络的配电网单相接地故障辨识方法[J]. 科学技术与工程, 2021, 21(21): 8909-8915. |
Liu Wen-jing, Yang Jun, Chen Zhen-ning, et al. Single phase earth fault identification method in distribution network based on improved artificial immune network[J]. Science Technology and Engineering, 2021, 21(21): 8909-8915. | |
32 | 田家辉, 梁栋, 葛磊蛟, 等. 面向高精度状态感知的配电系统微型同步相量测量单元优化配置[J]. 电网技术, 2019, 43(7): 2235-2242. |
Tian Jia-hui, Liang Dong, Ge Lei-jiao, et al. Placement of micro-phasor measurement units in distribution systems for highly accurate state perception[J]. Power System Technology, 2019, 43(7): 2235-2242. | |
33 | 张慧芬, 张帆, 潘贞存. 基于注入信号法的配电网单相接地故障自动定位算法[J]. 电力自动化设备, 2008(6): 39-43. |
Zhang Hui-fen, Zhang Fan, Pan Zhen-cun.Automatic fault locating algorithm based on signal injection method for distribution system[J]. Electric Power Automation Equipment, 2008(6): 39-43. | |
34 | 许栋梁, 赵健, 王小宇,等.基于有向邻接矩阵的配电网拓扑检测与识别[J].电力系统保护与控制,2021, 49(16): 76-85. |
Xu Dong-liang, Zhao Jian, Wang Xiao-yu,et al.Distribution network topology detection and identification based on a directed adjacency matrix[J]. Power System Protection and Control, 2021, 49(16): 76-85. | |
35 | 陶华, 杨震, 张民, 等. 基于深度优先搜索算法的电力系统生成树的实现方法[J]. 电网技术, 2010, 34(2): 120-124. |
Tao Hua, Yang Zhen, Zhang Min, et al. A depth-first search algorithm based implementation approach of spanning tree in power system[J]. Power System Technology, 2010, 34(2): 120-124. | |
36 | 贺宏锟, 史浩山.基于关联矩阵的网络拓扑辨识方法研究[J].西安交通大学学报, 2006, 40(4): 477-479. |
He Hong-kun, Shi Hao-shan. Method for network topology identification based on incidence matrix[J]. Journal of Xi'an Jiaotong University, 2006, 40(4): 477-479. | |
37 | 杨冬锋, 周苏荃, 刘隽, 等. 基于关联矩阵化简的电网拓扑辨识新方法[J]. 华东电力, 2014, 42(11): 2254-2259. |
Yang Dong-feng, Zhou Su-quan, Liu Juan, et al. A novel method for power grid topology identification based on incidence matrix simplification[J]. East China Electric Power, 2014, 42(11): 2254-2259. | |
38 | Zhang S H, Yan Y H, Bao W, et al. Network topology identification algorithm based on adjacency matrix[C]∥IEEE Innovative Sm Yang Zhi-chun art Grid Technologies-Asia, Auckland, New Zealand, 2017: 1-5. |
39 | 周苏荃, 柳焯. 新息图法拓扑错误辨识[J]. 电力系统自动化, 2000(4): 23-27. |
Zhou Su-quan, Liu Zhuo. An innovation graph approach to topology error identification[J]. Automation of Electric Power Systems, 2000(4): 23-27. | |
40 | 钟建伟, 刘佳芳, 倪俊, 等. 改进新息图法在不良数据检测与辨识中的应用[J]. 电力系统及其自动化学报, 2018, 30(9): 83-88. |
Zhong Jian-wei, Liu Jia-fang, Ni Jun, et al. Application of improved innovation graph method in detection and identification of bad data[J]. Proceedings of the CSU-EPSA, 2018, 30(9): 83-88. | |
41 | Alireza N, Mohammad J, Andrew K. Reconciliation of measured and forecast data for topology identification in distribution systems[J]. IEEE Transactions on Power Delivery, 2022, 37(1): 176-186. |
42 | Li T, Chai W J, Wu D Q. Topology and impedance identification method of low-voltage distribution network based on smart meter measurements[J]. Frontiers in Energy Research, 2022, 10: 895397. |
43 | Lu C, Zhao L, Li Y H. Topology checking method for low voltage distribution network based on fuzzy c-means clustering algorithm[C]∥IEEE International Conference on Artificial Intelligence and Computer Applications, Dalian, China, 2020: 1077-1080. |
44 | Liu S, Zhou D H, Li K M, et al. Topology identification method of low-voltage distribution network based on regression analysis of voltage characteristic parameters[C]∥6th International Conference on Smart Grid and Electrical Automation, Kuming, China, 2021: 75-79. |
45 | Shi Z, Dong K, Zhao J F, et al. An improved statistical algorithm for topology identification and parameter estimation of low-voltage distribution grids[C]∥IEEE Sustainable Power and Energy Conference, Chengdu, China, 2020: 2500-2505. |
46 | Vinicius C C, Walmir F, Fernanda C L T,et al. Automated determination of topology and line parameters in low voltage systems using smart meters measurements[J]. IEEE Transactions on Smart Grid, 2020, 11(6): 5028-5038. |
47 | Yang Z C, Shen Y, Yang F, et al. Topology identification method of low voltage distribution network based on data association analysis[C]∥5th Asia Conference on Power and Electrical Engineering, Chengdu, China, 2020: 2226-2230. |
48 | Li S T, Gao S F, Wu J B, et al. Research on topology identification of distribution network under the background of big data[C]∥IEEE 4th Conference on Energy Internet and Energy System Integration, Wuhan, China, 2020: 4294-4297. |
49 | Zhao J, Li L, Xu Z, et al. Full-scale distribution system topology identification using markov random field[J]. IEEE Transactions on Smart Grid, 2020, 11(6): 4714-4726. |
50 | Hu X Z, Cong W, Zhang L Q, et al. Power supply network topology identification based on smart meter data[C]∥IEEE/IAS Industrial and Commercial Power System Asia, Chengdu, China, 2021: 1484-1489. |
51 | 彭生刚, 李吉德.基于Apriori算法的网络拓扑辨识方法[J].山东电力高等专科学校学报, 2011, 14(6):5-7. |
Peng Sheng-gang, Li Ji-de. A network topology identification based on apriori method[J]. Journal of Shandong Electric Power College, 2011, 14(6): 5-7. | |
52 | 高泽璞, 赵云, 余伊兰, 等. 基于知识图谱的低压配电网拓扑结构辨识方法[J]. 电力系统保护与控制, 2020, 48(2): 34-43. |
Gao Ze-pu, Zhao Yun, Yu Yi-lan, et al. Low-voltage distribution network topology identification method based on knowledge graph[J]. Power System Protection and Control, 2020, 48(2): 34-43. | |
53 | Satya J P, Nirav B, Ramkrishna P, et al. Identifying topology of low voltage distribution networks based on smart meter data[J]. IEEE Transactions on Smart Grid, 2018, 9(5): 5113-5122. |
54 | Xu C, Lei Y, Zou Y H. A method of low voltage topology identification[C]∥IEEE Conference on Telecommunications, Optics and Computer Science, Shenyang, China, 2020: 318-323. |
55 | 张磐, 高强伟, 黄旭, 等. 基于电力载波通信的低压配电网拓扑结构辨识方法[J]. 电子器件, 2021, 44(1): 162-167. |
Zhang Pan, Gao Qiang-wei, Huang Xu, et al. Low-voltage distribution network topology identification method based on power carrier communication[J]. Chinese Journal of Electron Devices, 2021, 44(1): 162-167. | |
56 | Mei R, Yu K, Chen X Y. Topology identification in distribution network based on power injection measurements[C]∥2nd International Conference on Power and Renewable Energy, Chengdu, China, 2017: 477-484. |
57 | 刘超, 杨扬, 梁栋, 等. 基于AMI潮流匹配的中压配电网两阶段拓扑辨识[J]. 电力系统及其自动化学报, 2020, 32(3): 123-128. |
Liu Chao, Yang Yang, Liang Dong, et al.Two-stage topology identification of medium-voltage distribution networks based on power flow matching of AMI measurements[J].Proceedings of the CSU-EPSA, 2020, 32(3): 123-128. | |
58 | Mohammad F, Alireza S, Hamed M R. Topology identification in distribution systems using line current sensors: an MILP approach[J]. IEEE Transactions on Smart Grid, 2020, 11(2): 1159-1170. |
59 | Zhao Y, Chen J S, Vincent Poor H. Efficient neural network architecture for topology identification in smart grid[C]∥IEEE Global Conference on Signal and Information Processing, Washington, USA, 2016: 811-815. |
60 | Christopher W A, Liao Y. Electric transmission system fault identification using artificial neural networks[C]∥Clemson University Power Systems Conference, Clemson, USA, 2019: 1-6. |
61 | 杨华, 李喜旺, 司志坚, 等.基于图神经网络的配电网故障预测[J].计算机系统应用, 2020, 29(9): 131-135. |
Yang Hua, Li Xi-wang, Si Zhi-jian, et al. Accident prediction of power distribution network based on graph neural network[J]. Computer Systems & Applications, 2020, 29(9): 131-135. | |
62 | Li Y F, Wang S Y, Li L, et al. Artificial intelligence for real-time topology identification in power distribution systems[C]∥52nd North American Power Symposium, Tempe, USA, 2021: 1-6. |
63 | Mohammad J, Alireza S, Andrew K. Distribution system topology identification for der management systems using deep neural networks[C]∥IEEE Power & Energy Society General Meeting, Montreal, Canada, 2020: 1-5. |
64 | Wu H Y, Zhao X, Jian Z, et al.Gridtopo-gan for distribution system topology identification[J/OL] [2022-5-20]. |
65 | 徐瑞东, 常仲学, 宋国兵, 等. 注入探测信号的直流配电网接地故障识别方法[J]. 电网技术, 2021, 45(11): 4269-4277. |
Xu Rui-dong, Chang Zhong-xue, Song Guo-bing,et al.Grounding fault identification method for DC distribution network based on detection signal injection[J].Power System Technology, 2021, 45(11): 4269-4277. | |
66 | 戚振彪, 凌松, 刘文烨, 等. 基于高频测试信号注入的配电网故障节点在线识别方法[J]. 电力系统保护与控制, 2020, 48(4): 110-117. |
Qi Zhen-biao, Ling Song, Liu Wen-ye, et al. On-line fault node identification method for distribution network based on high frequency test signal injection[J]. Power System Protection and Control, 2020, 48(4): 110-117. | |
67 | 潘旭, 王金丽, 赵晓龙, 等. 智能配电网多维数据质量评价方法[J]. 中国电机工程学报, 2018, 38(5): 1375-1384. |
Pan Xu, Wang Jin-li, Zhao Xiao-long, et al. Multi- dimensional data quality evaluation method for intelligent distribution network[J]. Proceedings of the CSEE, 2018, 38(5): 1375-1384. | |
68 | 费思源. 大数据技术在配电网中的应用综述[J]. 中国电机工程学报, 2018, 38(1): 85-96. |
Fei Si-yuan. Overview of application of big data technology in power distribution system[J]. Proceedings of the CSEE, 2018, 38(1): 85-96. | |
69 | 苗新, 张东霞, 孙德栋.在配电网中应用大数据的机遇与挑战[J]. 电网技术, 2015, 39(11): 3122-3127. |
Miao Xin, Zhang Dong-xia, Sun De-dong. The opportunity and challenge of big data's application in power distribution networks[J]. Power System Technology, 2015, 39(11): 3122-3127. | |
70 | 杨帆, 夏荣立, 杨威.碳达峰、碳中和背景下新能源发展趋势研究[J].中国工程咨询, 2021(9): 22-26. |
Yang Fan, Xia Rong-li, Yang Wei. Research on the development trend of new energy under the background of carbon peak and carbon neutralization[J].China Engineering Consultants, 2021(9): 22-26. | |
71 | 郝素利, 石芬芬.标准化、科技创新与新能源发展的关系研究[J]. 科技管理研究, 2020, 40(1): 167-174. |
Hao Su-li, Shi Fen-fen. Research on the relationship of standardization, technological innovation and new energy development[J].Science and Technology Management Research, 2020, 40(1): 167-174. | |
72 | 马苗苗, 刘立成, 王鑫,等.风光发电与新能源汽车协同优化调度策略[J]. 吉林大学学报:工学版, 2022,52(9): 2096-2106. |
Ma Miao-Miao, Liu Li-Cheng, Wang Xin, et al.Coordinated optimal dispatch strategy of wind and photo voltaic power generation and new energy vehicles[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(9): 2096-2106. | |
73 | 张宏霞, 张衍杰, 马茜, 等. “双碳”目标下新能源产业发展趋势[J]. 储能科学与技术, 2022, 11(5): 1677-1678. |
Zhang Hong-xia, Zhang Yan-jie, Ma Qian, et al.The development trend of new energy industry under the goal of "carbon peak carbon neutrality"[J]. Energy Storage Science and Technology, 2022, 11(5): 1677-1678. | |
74 | 马钊, 安婷, 尚宇炜.国内外配电前沿技术动态及发展[J].中国电机工程学报, 2016, 36(6): 1552-1567. |
Ma Zhao, An Ting, Shang Yu-wei. State of the art and development trends of power distribution technologies[J]. Proceedings of the CSEE, 2016, 36(6): 1552-1567. | |
75 | 李晖, 刘栋, 姚丹阳. 面向碳达峰碳中和目标的我国电力系统发展研判[J]. 中国电机工程学报, 2021, 41(18): 6245-6259. |
Li Hui, Liu Dong, Yao Dan-yang.Analysis and reflection on the development of power system towards the goal of carbon emission peak and carbon neutrality[J]. Proceedings of the CSEE, 2021, 41(18): 6245-6259. | |
76 | 祁琪, 姜齐荣, 许彦平. 智能配电网柔性互联研究现状及发展趋势[J]. 电网技术, 2020, 44(12): 4664-4676. |
Qi Qi, Jiang Qi-rong, Xu Yan-ping. Research status and development prospect of flexible interconnection for smart distribution networks[J]. Power System Technology, 2020, 44(12): 4664-4676. | |
77 | 宋可荐, 吴命利, 杨少兵, 等. 我国电气化铁路高次谐波谐振问题研究综述[J]. 铁道学报, 2021, 43(1): 64-76. |
Song Ke-jian, Wu Ming-li, Yang Shao-bing, et al. Review of high-order harmonic resonances of electric railways in china[J]. Journal of the China Railway Society, 2021, 43(1): 64-76. |
[1] | 田铭兴,王田戈,张慧英,尹路. 可控电抗器研究综述及展望[J]. 吉林大学学报(工学版), 2023, 53(2): 328-345. |
[2] | 孙勇, 李志民, 于继来. 基于最小熵H∞控制的降阶电力系统稳定器设计[J]. 吉林大学学报(工学版), 2010, 40(02): 523-0528. |
|