吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (5): 1490-1495.doi: 10.13229/j.cnki.jdxbgxb.20220226

• 通信与控制工程 • 上一篇    

基于随机森林的无线传感器通信网络阻塞故障检测

杨亚让(),吴云虎   

  1. 喀什大学 物理与电气工程学院,新疆 喀什 844006
  • 收稿日期:2022-03-10 出版日期:2023-05-01 发布日期:2023-05-25
  • 作者简介:杨亚让(1972-),男,副教授,硕士.研究方向:宽带无线通信.E-mail:yangyarang4512@yeah.net
  • 基金资助:
    国家自然科学基金项目(11564020)

Blockage fault detection of wireless sensor communication network based on random forest

Ya-rang YANG(),Yun-hu WU   

  1. College of Physics and Electrical Engineering,Kashi University,Kashi 844006,China
  • Received:2022-03-10 Online:2023-05-01 Published:2023-05-25

摘要:

针对无线传感器通信网络信道分布复杂,受外界因素影响大,导致故障检测精准度低的问题,提出一种基于随机森林的无线传感器通信网络阻塞故障检测方法。通过预设随机变量模拟存在阻塞故障、不存在阻塞故障两种状态下,样本集属性向量变化,设立判定阈值。考虑到外界因素影响,建立随机森林决策规则,输入样本数据,通过预设变量模拟外界干预因子,让检测结果逼近真实值,不断迭代直至基于判定阈值的检测结果符合规则。仿真实验证明:本文方法的检测结果与实测值吻合度高,在存在干扰环境下也能保证检测准确率,耗用时间短。

关键词: 无线传感器通信网络, 阻塞故障, 属性向量, 随机森林决策规则, 外界干预

Abstract:

The channel distribution of wireless sensor communication network is complex, and it is greatly affected by external factors, resulting in low accuracy of fault detection. Therefore, a method of wireless sensor communication network blocking fault detection based on random forest is proposed. The change of attribute vector of sample set is simulated by preset random variables under the two states of blocking fault and non-blocking fault, and the decision threshold is set. Considering the influence of external factors, random forest decision rules are established, sample datas are input, external intervention factors through preset variables simulated, make the detection results approach the true value, and iterated until the detection results based on the decision threshold meet the rules. The simulation results show that the detection results of the proposed method are in good agreement with the measured values, and can also ensure the detection accuracy in the presence of interference environment, with short time consumption.

Key words: wireless sensor communication network, blocking fault, attribute vector, random forest decision rules, external intervention

中图分类号: 

  • TN382

图1

通信网络阻塞前后拓扑结构"

表1

输出结果有无偏估计描述"

参数结果输出值取值描述
Pβ无偏估计1,2符合真实值概率低于70%及30%
有偏估计0符合真实值概率高于70%。
Pβ'无偏估计1,2符合真实值概率低于70%及30%
有偏估计0符合真实值概率高于70%。

图2

仿真实验拓扑结构示意"

图3

存在外部干扰时网络信号变化"

图4

三种方法检测时间耗用曲线对比"

1 徐佳庆, 胡小月, 唐付桥, 等.基于随机森林的高性能互连网络阻塞故障检测[J].计算机科学, 2021, 48(6): 246-252.
Xu Jia-qing, Hu Xiao-yue, Tang Fu-qiao, et al. Detecting blocking failure in high performance interconnection networks based on random forest[J]. Computer Science, 2021, 48(6): 246-252.
2 王慧珍, 王立德, 杨岳毅, 等.基于Logistic集成学习的列车MVB网络异常检测方法研究[J].机车电传动, 2021(1): 138-144.
Wang Hui-zhen, Wang Li-de, Yang Yue-yi, et al. Anomaly detection for MVB network based on logistic ensemble learning[J]. Electric Drive for Locomotives, 2021(1): 138-144.
3 董瑞洪, 闫厚华, 张秋余, 等.基于深度森林算法的分布式WSN入侵检测模型[J].兰州理工大学学报, 2020, 46(4): 103-109.
Dong Rui-hong, Yan Hou-hua, Zhang Qiu-yu, et al. Distributed WSN intrusion detection model based on deep forest algorithm[J]. Journal of Lanzhou University of Technology, 2020, 46(4): 103-109.
4 高鑫杰, 谷云东, 刘浩, 等. Cost231-Hata框架下基于深度学习的无线传播智能预测模型[J].数学的实践与认识, 2021, 51(9): 312-320.
Gao Xin-jie, Gu Yun-dong, Liu Hao, et al. Wireless intelligent propagation prediction model based on deep learning under the framework of cost 231-hata[J]. Mathematics in Practice and Theory, 2021, 51(9): 312-320.
5 盘小娜, 陈哲, 李金泽, 等. 一种利用优先经验回放深度Q-Learning的频谱接入算法[J].电讯技术, 2020, 60(5): 489-495.
Pan Xiao-na, Chen Zhe, Li Jin-ze, et al. A dynamic spectrum access algorithm based on prioritized experience replay deep Q-learning[J] Telecommunication Engineering, 2020, 60(5): 489-495.
6 王崇宇, 郑召利, 刘天源, 等.基于卷积神经网络的汽轮机转子不平衡与不对中故障检测方法研究[J].中国电机工程学报, 2021, 41(7): 2417-2427.
Wang Chong-yu, Zheng Zhao-li, Liu Tian-yuan, et al. Research on detection method of steam turbine rotor unbalance and misalignment fault based on convolution neural network[J]. Proceedings of the CSEE, 2021, 41(7): 2417-2427.
7 马速良, 武建文, 袁洋, 等.多振动信息下的高压断路器机械故障随机森林融合诊断方法[J].电工技术学报, 2020, 35(): 421-431.
Ma Su-liang, Wu Jian-wen, Yuan Yang, et al. Mechanical fault fusion diagnosis of high voltage circuit breaker using multi-vibration information based on random forest[J]. Transactions of China Electrotechnical Society, 2020, 35(Sup.2): 421-431.
8 闫雒恒, 贺昱曜.年轮式水下无线传感器网络节点深度自调节优化部署方法[J].微电子学与计算机, 2021, 38(10): 49-56.
Yan Luo-heng, He Yu-yao. An autonomous depth-adjustment deployment algorithm by growth ring for underwater wireless sensor networks[J]. Microelectronics & Computer, 2021, 38(10): 49-56.
9 李林.一种基于元胞自动机的无线传感器网络安全补丁分发算法[J].仪表技术与传感器, 2020(8): 92-95, 103.
Li Lin. A security patch distribution algorithm for wireless sensor networks based on cellular automata[J]. Instrument Technique and Sensor, 2020(8): 92-95, 103.
10 许伯强, 孙丽玲.基于ESPRIT与Duffing系统的笼型异步电动机转子断条故障检测[J]. 电力自动化设备, 2020, 40(2): 117-123.
Xu Bo-qiang, Sun Li-ling. Detection based on ESPRIT and duffing system for broken rotor bar fault in cage induction motors[J]. Electric Power Automation Equipment, 2020, 40(2): 117-123.
11 张人杰, 胡超, 刘威.空间延迟容忍网络中多链路数据拥塞控制算法[J].吉林大学学报: 工学版, 2020, 50(4): 1472-1477.
Zhang Ren-jie, Hu Chao, Liu Wei.Multi-link data congestion control algorithm in spatial delay tolerance network[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(4): 1472-1477.
12 周航, 詹永照, 毛启容. 基于时空融合图网络学习的视频异常事件检测[J]. 计算机研究与发展, 2021, 58(1): 48-59.
Zhou Hang, Zhan Yong-zhao, Mao Qi-rong. Ideo anomaly detection based on space-time fusion graph network learning[J]. Journal of Computer Research and Development, 2021, 58(1): 48-59.
13 李晓会, 陈潮阳, 伊华伟, 等.基于云计算和大数据分析的大规模网络流量预测[J].吉林大学学报: 工学版, 2021, 51(3): 1034-1039.
Li Xiao-hui, Chen Chao-yang, Yi Hua-wei, et al.Large scale network traffic prediction based on cloud computing and big data analysis[J]. Journal of Jilin University (Engineering and Technology Edition), 2021, 51(3): 1034-1039.
14 郭嘉琰, 李荣华, 张岩, 等.基于图神经网络的动态网络异常检测算法[J].软件学报, 2020, 31(3): 748-762.
Guo Jia-yan, Li Rong-hua, Zhang Yan, et al. Graph neural network based anomaly detection in dynamic networks[J]. Journal of Software, 2020, 31(3): 748-762.
15 杨彦杰, 元晶晶, 张贺.改进的卷积神经网络在励磁单元中的故障诊断[J].计算机仿真, 2021, 38(6): 444-449.
Yang Yan-jie, Yuan Jing-jing, Zhang He. Fault diagnosis of excitation unit based on improved convolution neural network[J]. Computer Simulation, 2021, 38(6): 444-449.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!