吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (5): 1481-1489.doi: 10.13229/j.cnki.jdxbgxb.20210915

• 通信与控制工程 • 上一篇    

基于PID与Q⁃Learning的混合动力汽车队列分层控制

尹燕莉1,2(),黄学江1,潘小亮3,王利团2,詹森1,张鑫新1   

  1. 1.重庆交通大学 机电与车辆工程学院,重庆 400074
    2.包头北奔重型汽车有限公司,内蒙古 包头 014000
    3.重庆长安汽车股份有限公司,重庆 401120
  • 收稿日期:2021-09-13 出版日期:2023-05-01 发布日期:2023-05-25
  • 作者简介:尹燕莉(1980-),女,讲师,博士.研究方向:新能源汽车整车控制,车辆动力传动及其综合控制.E-mail:cqu_ylyin@126.com
  • 基金资助:
    重庆市教委科学技术研究项目(KJQN201800718);重庆市技术创新与应用发展重点项目(cstc2020jscx-dxwtBX0025)

Hierarchical control of hybrid electric vehicle platooning based on PID and Q⁃Learning algorithm

Yan-li YIN1,2(),Xue-jiang HUANG1,Xiao-liang PAN3,Li-tuan WANG2,Sen ZHAN1,Xin-xin ZHANG1   

  1. 1.School of Mechatronics and Vehicle Engineering,Chongqing Jiaotong University,Chongqing 400074,China
    2.Baotou Bei Ben Heavy Vehicle Co. ,Ltd. ,Baotou 014000,China
    3.Chongqing Changan Automobile Co. ,Ltd. ,Chongqing 401120,China
  • Received:2021-09-13 Online:2023-05-01 Published:2023-05-25

摘要:

提出一种基于PID与Q-Learning的混合动力汽车队列分层控制策略。上层控制器基于车-车通信获得队列中前车的速度和位置信息,采用PID控制器实现队列的纵向控制并获得后车的目标车速;下层控制器根据该目标车速采用Q-Learning进行混合动力汽车队列的能量管理。仿真结果表明:上层控制队列平均车间距保持在14 m左右,确保良好的行驶安全性;下层控制队列平均百公里油耗比DP策略增加了2.57%,离线计算时间减少了23%。该策略在保持与DP基本相同的燃油经济性下,不仅能适应随机工况,也能在线实现。

关键词: 车辆工程, Q-Learning, 队列, 分层控制, 混合动力汽车

Abstract:

A hierarchical control strategy based on PID and Q-Learning algorithm for hybrid electric vehicle platooning. In the upper-level controller is proposed in this paper, the speed and position information of the preceding vehicle in the platooning are obtained based on vehicle-vehicle communication,the PID controller to realize the longitudinal control is adopt and the target speed of the following vehicle is obtained. In the lower-level controller, Q-Learning is adopted to distribute the energy of the hybrid vehicle platooning according to the target speed. The simulation results show that the average vehicle spacing in the upper control is maintained at about 14 m, which can ensure good driving safety. The average fuel consumption per 100 kilometers in the lower control is only 2.57% higher than that of DP, and the offline calculation time is reduced by 23%. This strategy can not only adapt to random working condition, but can also be implemented online, which maintains basically the same fuel economy as DP.

Key words: vehicle engineering, Q-Learning, platooning, hierarchical control, hybrid electric vehicle

中图分类号: 

  • U461.8

表1

主要部件参数"

参 数数 值
整备质量/kg1372
迎风面积/m22
车轮半径/m0.272
主减速比4.38
变速比0.685~3.425
发动机最大功率/kW63
发动机最大转矩/(N·m)110
电机最大功率/kW10
电池容量/(A·h)6.5

图1

ISG型混合动力汽车结构"

图2

上层控制器结构"

图3

需求功率转移概率分布图"

图4

ECE_EUDC+1015工况优化转矩MAP图"

图5

UDDS+WLTP工况优化转矩MAP图"

图6

队列跟随车辆速度"

图7

队列跟随车辆位移"

图8

队列跟随车辆间距"

图9

电池SOC变化对比"

图10

1号跟随车发动机输出转矩"

图11

1号跟随车电机输出转矩"

表2

基于ECE_EUDC工况的百公里燃油消耗量"

项目Q-LearningDP
领航车3.7503.642
1号跟随车3.7903.672
2号跟随车3.7833.658
平均值3.7743.657
对比/%-+3.2

图12

实际工况队列跟随车辆速度"

图13

实际工况队列跟随车辆位移"

图14

实际工况队列跟随车辆间距"

图15

实际工况1号跟随车发动机输出转矩"

图16

实际工况1号跟随车电机输出转矩"

图17

电池SOC变化对比"

表3

基于实际工况的百公里燃油消耗量 (L/100 km)"

项目Q-LearningDP
对比+2.57%
领航车3.6323.575
1号跟随车3.6213.542
2号跟随车3.5803.450
平均值3.6113.522

表4

基于实际工况的计算时间 (s)"

项目离线在线
对比-23%
Q-Learning372055
DP4560
1 Liu J C, Chen Y Z, Zhan J Y, et al. Heuristic dynamic programming based online energy management strategy for plug-in hybrid electric vehicles[J]. IEEE Transactions on Vehicular Technology, 2019, 68(5): 4479-4493.
2 Xie S, Hu X, Xin Z, et al. Pontryagin's Minimum Principle based model predictive control of energy management for a plug-in hybrid electric bus[J]. Applied Energy, 2019, 236(15): 893-905.
3 林歆悠, 冯其高, 张少博. 等效因子离散全局优化的等效燃油瞬时消耗最小策略能量管理策略[J]. 机械工程学报, 2016, 52: 102-110.
Lin Xin-you, Feng Qi-gao, Zhang Shao-bo. Energy management strategy of equivalent fuel instantaneous consumption minimization strategy based on discrete global optimization of equivalent factor[J]. Chinese Journal of Mechanical Engineering, 2016, 52: 102-110.
4 Zou Y, Liu T, Liu D, et al. Reinforcement learning-based real-time energy management for a hybrid tracked vehicle[J]. Applied Energy, 2016, 171: 372-382.
5 Li Y F, Chen W B, Peeta S, et al. Platoon control of connected multi-vehicle systems under V2X communications: design and experiments[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(5): 1891-1902.
6 魏民祥, 杨佳伟, 陈凯, 等. 基于改进大脑情感学习模型的车辆纵向跟随[J]. 吉林大学学报: 工学版, 2022, 52(12): 2994-3005.
Wei Min-xiang, Yang Jia-wei, Chen Kai, et al. Vehicle longitudinal following based on improved brain emotion learning model[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(12): 2994-3005.
7 高振海, 严伟, 李红建, 等. 汽车自适应巡航线性参变间距控制算法[J]. 吉林大学学报: 工学版, 2016, 46(4): 1023-1029.
Gao Zhen-hai, Yan Wei, Li Hong-jian, et al. Automobile adaptive cruise linear parameter variable spacing control algorithm[J]. Journal of Jilin University (Engineering and Technology Edition), 2016, 46(4): 1023-1029.
8 Qiu L H, Qian L J. Global optimal energy management control strategies for connected four-wheel-drive hybrid electric vehicles[J]. Iet Intelligent Transport Systems, 2017, 11(5): 264-272.
9 郭景华, 王班, 王靖瑶, 等. 智能网联混合动力汽车队列模型预测分层控制[J].汽车工程, 2020, 42(10): 1293-1301, 1334.
Guo Jing-hua, Wang Ban, Wang Jing-yao,et al.Predictive hierarchical control of queue model for intelligent networked hybrid electric vehicles[J]. Automotive Engineering, 2020, 42(10): 1293-1301, 1334.
10 张东好, 项昌乐, 韩立金, 等. 功率分流混合动力车辆多目标优化分层控制方法[J]. 吉林大学学报: 工学版, 2016, 46(2): 373-382.
Zhang Dong-hao, Xiang Chang-le, Han Li-jin,et al. Multi-objective optimization hierarchical control method for power split hybrid electric vehicles[J]. Journal of Jilin University(Engineering and Technology Edition), 2016, 46(2): 373-382.
11 Qiu S, Qiu L, Qian L J, et al. Hierarchical energy management control strategies for connected hybrid electric vehicles considering efficiencies feedback[J]. Simulation Modelling Practice and Theory, 2018, 90: 1-15.
12 Ye X, Lai F, Huo Z. Energy management strategy design and simulation validation of hybrid electric vehicle driving in an intelligent fleet[J]. Electronics, 2019, 8(12): 8121516.
[1] 陈磊,王杨,董志圣,宋亚奇. 一种基于转向意图的车辆敏捷性控制策略[J]. 吉林大学学报(工学版), 2023, 53(5): 1257-1263.
[2] 陈鑫,张冠宸,赵康明,王佳宁,杨立飞,司徒德蓉. 搭接焊缝对铝合金焊接结构轻量化设计的影响[J]. 吉林大学学报(工学版), 2023, 53(5): 1282-1288.
[3] 张勇,毛凤朝,刘水长,王青妤,潘神功,曾广胜. 基于Laplacian算法的汽车外流场畸变网格优化[J]. 吉林大学学报(工学版), 2023, 53(5): 1289-1296.
[4] 汪少华,储堃,施德华,殷春芳,李春. 基于有限时间扩张状态观测的HEV鲁棒复合协调控制[J]. 吉林大学学报(工学版), 2023, 53(5): 1272-1281.
[5] 于贵申,陈鑫,武子涛,陈轶雄,张冠宸. AA6061⁃T6铝薄板无针搅拌摩擦点焊接头结构及性能分析[J]. 吉林大学学报(工学版), 2023, 53(5): 1338-1344.
[6] 田彦涛,黄兴,卢辉遒,王凯歌,许富强. 基于注意力与深度交互的周车多模态行为轨迹预测[J]. 吉林大学学报(工学版), 2023, 53(5): 1474-1480.
[7] 杨红波,史文库,陈志勇,郭年程,赵燕燕. 基于NSGA⁃II的斜齿轮宏观参数多目标优化[J]. 吉林大学学报(工学版), 2023, 53(4): 1007-1018.
[8] 赵睿,李云,胡宏宇,高镇海. 基于V2I通信的交叉口车辆碰撞预警方法[J]. 吉林大学学报(工学版), 2023, 53(4): 1019-1029.
[9] 陈小波,陈玲. 定位噪声统计特性未知的变分贝叶斯协同目标跟踪[J]. 吉林大学学报(工学版), 2023, 53(4): 1030-1039.
[10] 田彦涛,季言实,唱寰,谢波. 深度强化学习智能驾驶汽车增广决策模型[J]. 吉林大学学报(工学版), 2023, 53(3): 682-692.
[11] 何德峰,周丹,罗捷. 跟随式车辆队列高效协同弦稳定预测控制[J]. 吉林大学学报(工学版), 2023, 53(3): 726-734.
[12] 张建,刘金波,高原,刘梦可,高振海,杨彬. 基于多模交互的车载传感器定位算法[J]. 吉林大学学报(工学版), 2023, 53(3): 772-780.
[13] 何科,丁海涛,赖宣淇,许男,郭孔辉. 基于Transformer的轮式里程计误差预测模型[J]. 吉林大学学报(工学版), 2023, 53(3): 653-662.
[14] 刘嫣然,孟庆瑜,郭洪艳,李嘉霖. 图注意力模式下融合高精地图的周车轨迹预测[J]. 吉林大学学报(工学版), 2023, 53(3): 792-801.
[15] 谢波,高榕,许富强,田彦涛. 低附着路况条件下人车共享转向系统稳定控制[J]. 吉林大学学报(工学版), 2023, 53(3): 713-725.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!